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A pseudospectral model of linear elastic wave propagation is described based on the first order

stress-velocity equations of elastodynamics. k-space adjustments to the spectral gradient calcula-

tions are derived from the dyadic Green’s function solution to the second-order elastic wave equa-

tion and used to (a) ensure the solution is exact for homogeneous wave propagation for timesteps of

arbitrarily large size, and (b) also allows larger time steps without loss of accuracy in heterogeneous

media. The formulation in k-space allows the wavefield to be split easily into compressional and

shear parts. A perfectly matched layer (PML) absorbing boundary condition was developed to

effectively impose a radiation condition on the wavefield. The staggered grid, which is essential for

accurate simulations, is described, along with other practical details of the implementation. The

model is verified through comparison with exact solutions for canonical examples and further

examples are given to show the efficiency of the method for practical problems. The efficiency of

the model is by virtue of the reduced point-per-wavelength requirement, the use of the fast Fourier

transform (FFT) to calculate the gradients in k space, and larger time steps made possible by the

k-space adjustments. VC 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4730897]

PACS number(s): 43.20.Gp, 43.20.Bi, 43.35.Cg, 43.20.Px [TDM] Pages: 1271–1283

I. INTRODUCTION

Numerical models of elastic wave propagation are used

in many different fields, including seismology, geophysics

and soil mechanics,1,2 non-destructive testing,3 condensed

matter physics,4 design of SAW devices and other types of

sensor and transducer,5,6 and biomedical ultrasound.7 A

number of different numerical methods have been used to

solve the elastic wave equations but among the more com-

monly used are finite elements,8 boundary elements,9 finite

volume,10,11 integral equations,12 finite-differences,13–15 or

pseudospectral models.16–18 This paper describes a model of

elastic wave propagation in isotropic, heterogeneous solid

media using a k-space method, a variation on the pseudo-

spectral theme.

Spectral methods are characterized by the use of Fourier

or polynomial basis functions to describe the field variables

and have the advantages over finite difference methods that

the mesh requirements are more relaxed, requiring only two

nodes per wavelengths, and that the spatial gradients can in

many cases (such as Fourier collocation) be calculated effi-

ciently using fast Fourier transforms.19–21 Pseudospectral

models are spectral models for which the time derivatives

are calculated using finite differences.22 k-space methods

also use a spectral approach to calculate the derivatives but

look for ways to improve the approximation of the temporal

derivative. k-space methods are typically used for hyperbolic

problems for which an exact solution is known in the homo-

geneous case. In some cases this allows an adjustment to be

made to either the (finite difference) time derivative or the

(spectral) spatial derivatives which converts the time-

stepping pseudospectral model into an exact model for ho-

mogeneous media, and stable for larger timesteps (for a

given level of accuracy) in heterogeneous media. An early

use of a k-space adjustment to a gradient calculation to

improve a pseudospectral method was made by Fornberg

and Whitham,23 who applied it to a nonlinear wave equation,

but did not use the term “k-space.” Bojarski and others24–29

applied similar ideas to linear scalar wave equations, with

clear applications in acoustics and ultrasound, but Liu30 was

the first to apply k-space ideas to elastic wave problems. He

derived a k-space form of the dyadic Green’s function for

the elastic wave equation and used it, in conjunction with

equivalent source terms accounting for medium heterogene-

ities, to calculate the scattered field iteratively in a Born
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series. In a slightly different approach, Tabei et al.31 proposed

a k-space method for solving a pair of coupled first order

acoustic equations, rather than a second order wave equation,

which has been applied to scalar acoustic problems.32,33 This

paper extends their approach to the elastic wave case. The

principal differences of this method over that of Liu30 are that

due to the fact that we solve first order equations rather than a

second order wave equation. This allows velocity (or displace-

ment) as well as stress sources to be implemented simply, and

permits the straightforward inclusion of a perfectly matched

layer (PML) as an absorbing boundary. The implementation

of the PML used here, however, requires each of the field var-

iables to be split into three directions which will increase the

overall memory requirements.

The layout of this paper is as follows. The k-space model

of elastic wave propagation is derived in Sec. II. More specifi-

cally, in Sec. II A. the equations used to model elastic waves

are briefly reviewed, in Sec. II B an exact k-space solution of

the elastic wave equations is derived, this solution is com-

pared to a leapfrog pseudo-spectral method in order to derive

two k-space propagators corresponding to compressional and

shear wave propagation in Sec. II C, and in Sec. II D their use

in a model based on the first order elastic wave equations is

considered. Two characteristics of the model are the use of

the dyadic wavenumber tensor to split the field into shear and

compressional components, and the use of separate propaga-

tors for the shear and compressional components. The details

of the numerical implementation, including the staggered

grid, absorbing boundary conditions and source terms are

described in Sec. III, examples and validating comparisons to

analytical solutions are given in Sec. IV, and a discussion sec-

tion and summary conclude the paper.

II. k-SPACE MODEL OF ELASTIC WAVE
PROPAGATION

A. Governing equations

The fundamental equations used to describe deforma-

tion in isotropic elastic solids are the relationships between

displacement ui, strain �ij, and stress rij:

rij ¼ kdij�kk þ 2l�ij; (1)

�ij ¼
1

2

@ui

@xj
þ @uj

@xi

� �
; (2)

where l and k are the Lamé elastic constants and are xi,

i ¼ 1; 2; 3, Cartesian position coordinates. To model the

propagation of lossless elastic waves it is enough to add

Newton’s second law:

q
@2ui

@t2
¼ @rij

@xj
þ fi; (3)

where fi is a body force and q is the mass density. The Lamé

constants are related to the propagation speeds of shear and

compressional waves, c2
s and c2

p, as

l ¼ c2
s q; kþ 2l ¼ c2

pq: (4)

Equations (1)–(3) can be written as two coupled first order

equations

@rij

@t
¼ kdij

@vk

@xk
þ l

@vi

@xj
þ @vj

@xi

� �
; (5)

q
@vi

@t
¼ @rij

@xj
þ fi; (6)

where vi ¼ @ui=@t is the velocity vector. The numerical

model described in this paper is based on these first-order

equations. However, the k-space method is derived from the

second order wave equation which can be obtained by elimi-

nating the stress tensor from Eqs. (5) and (6). In vector nota-

tion with u ¼ ðu1; u2; u3Þ it has the form (following some

rearrangement):

q
@2u

@t2
¼ rkðr � uÞ þ rl �

�
ruþ ðruÞT

�
þ ðkþ 2lÞrðr � uÞ � lr� ðr � uÞ þ f;

(7)

where f is the vector force term. (We will move between the

index and bold vector notation, and even combine them if

necessary, to give the clearest expressions.) When the me-

dium is homogeneous, so that the gradients of the Lamé pa-

rameters in the first two terms are zero, this reduces to the

elastic wave equation

@2u

@t2
� c2

prðr � uÞ þ c2
sr� ðr � uÞ ¼ 0; (8)

where the forcing term has been left out for simplicity. Note

that when the coupled first order Eqs. (5) and (6) are solved

numerically for a heterogeneous medium, it is equivalent to

solving Eq. (7). However, the k-space method will be

motivated by examining solutions in the homogeneous case,

Eq. (8).

B. Exact k-space solution for a homogeneous
medium

In Fourier spectral methods the wavefield is mapped

from the spatial domain, x ¼ ðx1; x2; x3Þ, to the wavenumber

domain or k-space, k ¼ ðk1; k2; k3Þ, using Fourier transforms,

i.e. the wavefield is decomposed spatially into Fourier

components:

ujðxÞ ¼
X

k

UjðkÞeik�x; (9)

where U ¼ ðU1ðkÞ;U2ðkÞ;U3ðkÞÞ is the displacement vector

in k-space.

The spatial gradients can now be calculated straightfor-

wardly as

@

@xj
¼ F�1fikjFf�gg; (10)

where i is the imaginary unit. By writing the spatial gradient

operator as r ¼ ik and recalling that
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k� ðk� UÞ ¼ ðkk� k2IÞ � U; (11)

where kk is the dyadic tensor formed by the outer product of

k with itself, k ¼ jkj, and I is the identity matrix, Eq. (8) can

be written in k-space as12

@2U

@t2
þ k2

�
c2

pðbkbkÞ þ c2
s ðI� bkbkÞ� � U ¼ 0; (12)

where bk ¼ k=k is the unit vector in direction. k (Note that

for a single frequency oscillation, for which the time deriva-

tive becomes –x2, there is no simple dispersion relation

between x and k. This k does not have a simple physical

interpretation, as it would if cs ¼ 0 or cp ¼ 0.)

As the medium is homogenous the compressional and

shear waves will travel independently and they can therefore

be separated. Formally, we write the displacement as the

sum of scalar and vector potentials. In k-space this is

U ¼ Up þ Us ¼ ik/þ ik� w; (13)

where Up ¼ ik/ and Us ¼ ik� w are the compressional and

shear components of the displacement field. Substituting this

into Eq. (12), and using the dyadic identities

bkbk �k¼ k; ðI� bkbkÞ �k¼ 0bkbk � ðk�UÞ ¼ 0 ; ðI� bkbkÞ � ðk�UÞ ¼ k�U for anyU;

(14)

allows Eq. (12) to be split into two parts corresponding to

compressional and shear wave propagation

@2

@t2
þ ðcpkÞ2

� �
/ ¼ 0; (15)

@2

@t2
þ ðcskÞ2

� �
w ¼ 0: (16)

These equations are satisfied by the scalar Green’s functions

gpðk; tÞ ¼
0; t < 0

sinðcpktÞ=ðcpkÞ; t � 0;

�
(17)

gsðk; tÞ ¼
0; t < 0

sinðcsktÞ=ðcskÞ; t � 0:

�
(18)

Using these solutions, a dyadic Green’s function that satis-

fies Eq. (12) for a vector source term can be written as

Gðk; tÞ ¼ Gpðk; tÞ þ Gsðk; tÞ; (19)

where

Gpðk; tÞ ¼
0; t < 0bkbksinðcpktÞ=ðcpkÞ; t � 0;

�
(20)

Gsðk; tÞ ¼
0; t < 0

ðI� bkbkÞsinðcsktÞ=ðcskÞ; t � 0:

�
(21)

The dyadic Green’s function is required when the source

(forcing) function is a vector. In this case the solution, in

k-space, is

Uðk; tÞ ¼
ð

Gðk; t� t0Þ � Fðk; t0Þdt0: (22)

If the displacement is zero for t < 0, but abruptly becomes

U0ðkÞ at t ¼ 0, this is equivalent to a source term of the form

F ¼ U0d
0ðtÞ and the solution to this initial value problem

becomes30

Uðk; tÞ ¼ cosðcpktÞbkbk � U0 þ cosðcsktÞðI� bkbkÞ � U0:

(23)

C. Second-order model for a homogeneous
medium: Shear and compressional k-space
adjustments

A time-stepping pseudospectral formulation of Eq. (12)

that uses a first order finite difference step in time can be

written as

Uðk; tþ DtÞ � 2Uðk; tÞ þ Uðk; t� DtÞ
Dt2

¼ �k2
�

c2
pðbkbkÞ þ c2

s ðI� bkbkÞ� � U: (24)

Using the fact that Up ¼ ik/ so bkbk � Up ¼ Up and

ðI� bkbkÞ � Up ¼ 0, and Us ¼ ik� w so bkbk � Us ¼ 0 and

ðI� bkbkÞ � Us ¼ Us [see Eqs. (14)] gives

Uðk; tþ DtÞ � 2Uðk; tÞ þ Uðk; t� DtÞ

¼ �4
cpkDt

2

� �2

Up � 4
cskDt

2

� �2

Us: (25)

Now, by using the trigonometric identities cos cpkðt6DtÞ
� �

¼ cosðcpktÞ cosðcpkDtÞ � sinðcpktÞsinðcpkðt6DtÞÞ with Eq.

(23) the following expression can be found:

Uðk; tþ DtÞ � 2Uðk; tÞ þ Uðk; t� DtÞ

¼ �4 sin2 cpkDt

2

� �
Upðk; tÞ � 4 sin2 cskDt

2

� �
Usðk; tÞ:

(26)

This is a time-stepping solution to Eq. (12) which is

exact for any size of time step Dt. Comparing this to

Eq. (24), which is limited to small Dt, shows that by

replacing ðcp;skDt=2Þ2 with sin2ðcp;skDt=2Þ it is possible to

extend the length of the timestep which can be taken

without reducing accuracy. This opens up two possibil-

ities: (a) replacing Dt with Dt sincðcp;skDt=2Þ or (b)

replacing k2 with k2sinc2ðcp;skDt=2Þ. As the k2 arises from

the gradient terms in Eq. (8) when writing r ! ik, an

adjustment to this substitution which would result in

Eq. (26) would be

rp;s ! ik sincðcp;skDt=2Þ: (27)

These k-space adjustments are used below for the calculation

of the derivatives in a first order model.
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D. First-order k-space model for a heterogeneous
medium

One way to approach the case of propagation through a

heterogeneous medium is to consider the perturbations in

the medium properties as time-varying effective source

terms in the second order wave equation. However, in order

to be able to implement an absorbing boundary condition

(ABC) that effectively imposes a radiation condition on the

field by absorbing any outward travelling waves that reach

the edge of the domain of interest it is convenient to work

with the first order coupled equations, Eqs. (5) and (6).

Such an ABC is necessary in Fourier based methods to

avoid wave-wrapping (see Sec. III below). By replacing

each temporal derivative with a forward finite difference

approximation, these equations can be written in a way that

allows them to be numerically integrated sequentially, one

timestep Dt at a time [note that since in the heterogeneous

case the material properties can be a function of space, the

elastic constants and the density have an explicit (r)

dependence]:

rijðr; tþ DtÞ ¼ rijðr; tÞ þ DtkðrÞdij
@vkðr; tÞ
@xk

þ DtlðrÞ @viðr; tÞ
@xj

þ @vjðr; tÞ
@xi

� �
; (28)

viðr; tþ DtÞ ¼ viðr; tÞ þ
Dt

qðrÞ
@rijðr; tÞ
@xj

þ fiðr; tÞ
� �

:

(29)

(In this section index rather than bold notation will be used,

as its greater flexibility will be useful. The unit dyadic bkbk
will be written as bki

bkj and the p and s components in this

section will be identified with superscripts rather than the

subscripts used in Sec. II C above.)

First, a simple overview of the numerical scheme will

be given for an initial value problem. Essentially, at each

time step the field is split into shear and compressional com-

ponents so that separate shear and compressional derivative

operators can be used on the two components. The two parts

of field are then recombined before being separated again at

the next timestep. Details of the actual implementation used

in the examples, which used staggered time and space grids

and absorbing boundaries will be described in more detail

below, and the implementation of the sources will be dis-

cussed in Sec. III.

Starting with the initial conditions, rijðr; t ¼ 0Þ and

viðr; t ¼ 0Þ, Eqs. (28) and (29) could be solved numerically

using the following sequential scheme:

(1) Separate the particle velocity vector into compressional

and shear (p and s) components, viðk;tÞ¼vp
i ðk;tÞþvs

i ðk;tÞ,
using

vp
i ðk; tÞ ¼ bki

bkjvjðk; tÞ; vs
i ðk; tÞ ¼ ðdij � bki

bkjÞvjðk; tÞ:
(30)

(2) Calculate the particle velocity divergence, @vk=@xk, the

dyadic, @vj=@xi, and its transpose, @vi=@xj, by calculat-

ing the p and s contributions separately using the p and s
k-space gradient operators, from (27),

@p;s½��
@xj

¼ F�1fikj sincðccp;skDt=2ÞFf�gg; (31)

where, in order to ensure the stability,31 ccp;s is taken as

the maximum value of the compressional/shear wave

speed in the medium, i.e., ccp;s ¼ max cp;sðrÞ
� �

.

(3) Calculate p and s updates to the stress tensor such that

Drp;s
ij ðr; tÞ ¼ kðrÞdij

@p;sv
p;s
k ðr; tÞ
@xk

þlðrÞ @p;sv
p;s
i ðr; tÞ
@xj

þ
@p;sv

p;s
j ðr; tÞ
@xi

 !
; (32)

rp;s
ij ðr; tþ DtÞ ¼ rp;s

ij ðr; tÞ þ DtDrp;s
ij ðr; tÞ: (33)

(4) Recombine the shear and compressional components

and calculate the velocity vector at the next step

@rij

@xj
ðr; tþ DtÞ ¼

@pr
p
ijðr; tþ DtÞ
@xj

þ
@srs

ijðr; tþ DtÞ
@xj

;

(34)

viðr; tþ DtÞ ¼ viðr; tÞ þ
Dt

qðrÞ
@rij

@xj
ðr; tþ DtÞ

� �
: (35)

(5) Return to Eq. (30) to start the next timestep.

Note that mode conversion will occur when the material

parameters are non-homogeneous so it is necessary to com-

bine and re-separate the velocity field to ensure that this

occurs, i.e., the parts of the field that have been converted

from shear wave to compressional are reassigned to the com-

pressional part of the field (and vice versa) when it is re-split.

This scheme was implemented using staggered grids and

absorbing boundaries, details of which are in the next section.

III. NUMERICAL IMPLEMENTATION

A. Implementation using spatial and temporal
staggered grids

Staggered grids have found widespread use in the numerical

models of wave propagation, in particular in finite-difference

methods because (to give a simple example) the calculation of a

central difference estimate of a gradient is more accurate than

the corresponding forward or backward difference. In spectral

methods this improvement in the gradient calculation is not

required, but staggered grids have nevertheless been shown to

improve stability and efficiency in pseudospectral methods.34

The spatial staggered grid scheme shown in Fig. 1 was

used in the examples in Sec. IV. Note that for a two-

dimensional implementation only the top layer of the staggered

grid shown in Fig. 1 is required. In order to use staggered grids

it is necessary to define the material properties on the half-spa-

tial-step grids. Time-staggering was also used: the velocities

were calculated at times half a timestep, Dt=2, different from

the stresses.
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The calculations of the gradients of the field components

at the staggered grid points were calculated by shifting the

Fourier components by half a grid spacing as follows [cf.

Eq. (31)]:

@p;s½��
@x6

j

¼ F�1 ikjsinc ðccp;skDt=2Þe6ikjDxj=2Ff�g
n o

: (36)

Using these notations allows the full discrete equations to be

written succinctly. The six equations for updating the shear

and compressional parts of each of the three velocity compo-

nents can be written as

vp;s
i

�
r; tþ Dt=2

�
¼ vp;s

i

�
r; t� Dt=2

�
þ Dt

qiðrÞ

�
@p;sr

p;s
ii ðr; tÞ
@xþi

þ
X
j6¼i

@p;sr
p;s
ij ðr; tÞ
@x�j

	
; (37)

where the summation convention is not used. The following

notation is used above and in Eq. (38): qxðrÞ ¼ qðxþ Dx=2;
y; zÞ, qyðrÞ ¼ qðx; yþ Dy=2; zÞ, qzðrÞ ¼ qðx; y; zþ Dz=2Þ,
lxyðrÞ ¼ lðxþ Dx=2; yþ Dy=2; zÞ, lxzðrÞ ¼ lðxþ Dx=2; y;
zþ Dz=2Þ, lyzðrÞ ¼ lðx; yþ Dy=2; zþ Dz=2Þ and on the

normal grid lðrÞ ¼ lðx; y; zÞ and kðrÞ ¼ kðx; y; zÞ.
The twelve stress components (six stress components

split into shear and compressional parts) can be updated

using the following equation:

rp;s
ij ðr;tþDtÞ¼rp;s

ij ðr;tÞþDtkðrÞdij

@p;sv
p;s
k

�
r;tþDt=2

�
@x�k

� �

þDt2l�ðrÞ
@p;sv

p;s
i

�
r;tþDt=2

�
@x�j

 

þ
@p;sv

p;s
j

�
r;tþDt=2

�
@x�i

!
;

(38)

where l�ðrÞ ¼ lðrÞ for i ¼ j (normal grid) and l�ðrÞ¼ lijðrÞ
for i 6¼ j (staggered grids), and in this equation the summa-

tion convention is used. Note when using staggered grids,

the wave number domain unit dyadic ðbki
bkjÞ must be modi-

fied according to Eqs. (39a) and (39b) in order to account for

the shifts in medium properties and field variables.

ðbki
bkjÞstaggeredgrids ¼ ðbki

bkjÞnormalgrids � nij; (39a)

where nij is as an arbitrary function defined as

nij ¼
(

1 for i ¼ j

eiðkxi
Dxi�kxj

DxjÞ=2
for i 6¼ j;

(39b)

where the i before the parentheses is the imaginary number,

not to be confused with the subscript i. Notable is that the

staggered grids unit dyadics is not symmetric, in contrary to

normal grids unit dyadics.

B. Absorbing boundary condition

The periodicity in the field implied by using discrete

Fourier transforms to calculate the spatial gradients results in

the wavefield “wrapping”—when a wave leaves one side of

the domain it instantly appears on the opposite side. This

effect, sometimes referred to as a “periodic boundary con-

dition,” means that the computational domain must be larger

(perhaps significantly larger) than the domain of interest to

avoid contamination of the field of interest by the wrapped

field. This would result in a considerable increase in memory

requirements, especially in the 3D case, so measures that

avoid the wave wrapping are desirable. One approach is to

employ a perfectly matched layer (PML) at the edges of the

domain which gradually decreases the magnitude of the

waves in a strip close to the edge so that by the time they

reach the boundary and wrap around, the amplitude of the

wrapped field is negligible. However, it is not sufficient just

to absorb all of the field components in a strip close to each

of the boundaries as this will affect the field in the main

(non-PML) part of the domain. This is tackled, for the case

of acoustic waves, by artificially dividing the scalar pressure

field into subfields associated with each spatial direction31 so

that only the split of the field normal to the boundaries is

attenuated in the PML.

Similar PMLs for elastic wave propagation are imple-

mented by writing the field in terms of potentials, then artifi-

cially dividing them into direction-dependants splits and

attenuating the directional splits normal to the boundaries.35

The disadvantage of this approach for a Fourier based

method is that the potential fields and their dependant auxil-

iary fields would necessarily be calculated everywhere, due

to the nonlocal behavior of the Fourier transform. This

would require the introduction of numerous unnecessary var-

iables at each timestep. In an alternative approach used in

this paper, the components of the vector and tensor fields

themselves are used directly in the implementation of the

PML.36 In order to incorporate this approach into the present

k-space method, in a generic three-dimensional problem, the

FIG. 1. Three-dimensional spatial staggered grid scheme. In the two-

dimensional implementation just the top layer of the staggered grid was

implemented. Time-staggering was also used: the stresses were calculated at

times nDt; n ¼ 0; 1;…, and the velocities at the shifted times ðnþ 1=2ÞDt.
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six components of the velocity field and the twelve compo-

nents of the stress field (recall that each component has a

shear and compressional part) are split into three directions,

to allow the x, y, and z splits to be attenuated independently.

This increases the number of variables that must be stored,

but its greater effectiveness as a PML allows the absorbing

region to be reduced in thickness. Three PML absorption

coefficients are used to effect this, ax, ay, and az. This is

shown below, suppressing for the moment the temporal stag-

gering. For the velocity fields,

@p;s

@t

�
iv

p;s
i ðr; tÞ

�
¼ ai

�
iv

p;s
i ðr; tÞ

�
þ 1

qiðrÞ
@p;sr

p;s
ii ðr; tÞ
@xþj

( )
; (40a)

@p;s

@t jv
p;s
i r; tð Þ

� �
¼ aj jv

p;s
i r; tð Þ

��
þ 1

qi rð Þ
@p;sr

p;s
ij ðr; tÞ
@x�j

( )
; j 6¼ i:

(40b)

For the stress fields,

@p;s

@t kr
p;s
ii ðr; tÞ

� �
¼ ak kr

p;s
ii ðr; tÞ

� �
þ kðrÞ þ lðrÞdkið Þ

� @p;sv
p;s
k ðr; tÞ
@x�k

� �
; k ¼ x; y; z;

(41a)

@p;s

@t ir
p;s
ij r; tð Þ

� �
¼ ai ir

p;s
ij r; tð Þ

� �
þ lij rð Þ

@p;sv
p;s
j ðr; tÞ
@xþi

 !
; j 6¼ i;

(41b)

@p;s

@t

�
j r

p;s
ij ðr; tÞ

�
¼ aj jr

p;s
ij r; tð Þ

� �
þ lij rð Þ @p;sv

p;s
i ðr; tÞ
@xþj

 !
; j 6¼ i

(41c)

where k; i; j ¼ x; y; z. Note that the summation convention is not
used in Eqs. (40a), (40b), (41a), (41b), and (41c). Labeling the

artificially direction-dependant splits of each field is based on

gradients of that field along each particular spatial direction. To

see this, consider the stress field rxx in the 2D plane ðx; yÞ rxx is

calculated at each timestep as ðkþ 2lÞ@ux=@xþ k@uy=@y. The

x-part is then referred to be as ðkþ 2lÞ@ux=@x (proportional to

the gradient along x direction) and the y-part is considered as

k@uy=@y (proportional to the gradient along y direction).

Following Tabei et al.,31 the equations above are in the

form of @R=@t ¼ aRþ Q so can be rearranged as

@ðeatRðtÞÞ=@t ¼ eatQðtÞ which is in a form more stable for

calculation. The full equations as they were implemented,

including the staggered temporal and spatial grids and PML

in the above form are given in the Appendix. Here, the

absorption coefficients ðaxj
; j ¼ x; y; zÞ are chosen according

to a power law attenuation as

axj ¼ amax
cmax

Dxj

xj � xj0

xjmax � xj0

� �n

; (42)

where xj0 is the coordinate at the inner edge of the PML,

xjmax is the coordinate at the outer edge of the grid, cmax is

the maximum value of the compressional and shear wave

speeds, Dxj is the grid spacing in the PML, and amax is the

maximum absorption in Nepers per cell, within the PML.

C. Source implementation

For the numerical simulations, two types of sources,

compressional monopoles and plane waves, were modeled in

the two-dimensional space ðx; yÞ. For implementation pur-

poses, the source given with profile f ðtÞ is first considered in

the form of the displacement compressional potential ð/Þ,
and then the elasticity constitutive equations [Eqs. (1) and

(2)] are applied to calculate the stresses for each timestep; so

that a short pulse in ultrasound or its counterpart in seismol-

ogy and oceanography, an explosive source, can be modeled

by adding a known value to stress components, while keep-

ing the initial velocities equal to zero.

Given the source profile as f ðtÞ, an incident cylindrical

compressional wave may be written as / ¼ f ðt� r=cpÞ=
ffiffi
r
p

,

where r is the distance from the origin, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. This

form can be used to model a line source in the 3D space or a

monopole source in 2D planes. Using constitutive equations

[Eqs. (1) and (2)], we can write,

rxx ¼ qc2
p 2gþ r

@g

@r

� 	
� 2qc2

s gþ y2

r

@g

@r

� 	
; (43a)

ryy ¼ qc2
p 2gþ r

@g

@r

� 	
� 2qc2

s gþ x2

r

@g

@r

� 	
; (43b)

rxy ¼ qc2
s

xy

r

@g

@r
; (43c)

where g ¼ �ð1=2c2
pr2

ffiffi
r
p
Þff ðt� r=cpÞ þ 2

ffiffi
r
p

f 0ðt� r=cpÞg.
To fulfill these conditions, one can equally add a known

value to the normal stresses at the same nodal point, while

keeping the shear stress equal to zero. This equivalency has

been shown by Refs. 13 and 37. In the 3D space, where a

monopole propagates spherical waves in the form of

/ ¼ f ðt� r=cpÞ=r, a similar approach could be undertaken

and the same conclusion would be drawn.38

A compressional plane wave propagating along an arbi-

trary direction xj of a 2D space with an arbitrary time profile

f ðtÞ may be written as f ðt� xj=cpÞ; using constitutive equa-

tions in Cartesian coordinates, assuming that the wave prop-

agates in the x direction, we then can write,

rxx¼
kþ2l

c2
p

f 00 t� x

cp

� �
; ryy¼

k
c2

p

f 00 t� x

cp

� �
; rxy¼ 0;

(44)

where f 00 ¼ @2f=@t2. Equations (44) show that including a

compressional plane wave source in x direction involves
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unequally adding a known value proportional to the Lamé

parameters to normal stresses at a line of nodes perpendicu-

lar to the direction of propagation while keeping the shear

stress equal to zero. Note that in the case of acoustic waves,

l ¼ 0, rxx ¼ ryy ¼ �P, where P is the acoustic pressure;

therefore, normal stress fields are updated equally. Likewise,

similar relations could be written for a plane wave propagat-

ing in the 3D space.

In all the following examples, the time profiles of the

sources for the normal stresses are considered to be the first

and the second derivatives of a Gaussian pulse with the cen-

ter frequency a and the time delay to.

IV. EXAMPLES

A. Monopole in an infinite homogenous medium

As a first example, consider a point source in an

unbounded homogenous medium. An explosive source is

modeled using the derivative of a Gaussian shape with the

center frequency a ¼ 6:4 Hz and the time delay to ¼ 0:225 s

(allowing sufficient time before the pulse reaches its peak to

ensure that the input pulse is effectively zero at t ¼ 0). With

a medium with the compressional wave speed of

cp ¼ 4000 m s�1, the shear wave speed of cs ¼ 2400 m s�1

and the density of q ¼ 2700 kg m�3, the number of grid ele-

ments is set 150 in each direction with equal grid-spacing of

100 m (which corresponds to only 3 points per minimum

wavelength in the medium). The Courant–Friedrichs–Lewy

criterion is CFL ¼ c0Dt=Dx, where c0 for elastic waves

should be replaced by the maximum of the compressional

and shear wave speeds, and was set to 0.3. The receiver is

located at 400 m from the source. A PML is used on all the

edges of the grid to simulate a two-dimensional unbounded

space. For effective attenuation on the edges of the bound-

ary, a PML thickness of 20 grid points, together with a maxi-

mum PML absorption coefficient of amax ¼ 4 and absorption

power of n ¼ 4, were empirically found to be sufficient to

minimize boundary reflection and wraparound effects.

Figure 2 shows the radial component of the displace-

ment compared with the analytical solution for the case of

an infinite (unbounded) homogenous medium, which is

obtained by numerically convolving the pulse shape with

the Green’s function solution given by Ref. 39, which

shows excellent agreement. In Fig. 3 the net energy of the

propagating elastic wave is plotted versus time to first

ensure that the method well-preserves the energy and sec-

ond demonstrate the effectiveness of the PML by showing

how the energy of the propagating wave decreases as a

function of time once it reaches the PML. Region (a) corre-

sponds to the time when the source energy is input. Region

(b) is the main portion of the simulation in which the wave

travels towards the boundaries. As it can be observed, the

energy is well-preserved as an important characteristic of a

numerical method. Region (c) is when the wavefront

reaches the boundary and is being absorbed and finally

region (d) is after all the energy is absorbed. For this pur-

pose, the total duration of the simulation was extended to

4 sec to ensure that all the travelling energy is absorbed

effectively.

B. Two homogenous half-spaces

The second example considers an explosive source in a

fluid half-space overlying an elastic half-space. The explosive

source is modeled as the second derivative of a Gaussian (also

known as the Ricker wavelet), with the center frequency a
¼ 4 Hz and the initial time delay to ¼ 0:5s. The acoustic

(fluid) region is modeled simply by letting l ¼ 0, or equiva-

lently, cs ¼ 0. The source is located in the fluid at 870 m above

the interface and the receiver is positioned at 870 m above the

interface with the horizontal distance of 600 m from the source.

The acoustic properties of the fluid are considered as those of

water (the sound speed of cf ¼ 1500 m s�1 and the density of

q ¼ 1000 kg m�3) and the elastic region is considered as soil

with the compressional wave speed of cp ¼ 3400 m s�1, the

shear wave speed of cs ¼ 2500 m s�1 and the density of

q ¼ 1963 kg m�3. The PML is set as in the previous example.

In order to demonstrate the accuracy, the velocity com-

ponents time series for the recorded signal at the receiver are

compared with the analytical solution. In order to obtain the

analytical solution, the Green’s function given by Ref. 40,

for acoustic wave reflection from a solid-fluid flat interface,

FIG. 2. The radial displacement as a function of time 400 m from an explo-

sive source in a 2D homogenous elastic medium (i.e., cylindrical wave prop-

agation). Analytical solution (solid), k-space method (circles).

FIG. 3. The net energy of the propagating wave vs time. After the source is

added to the field [region (a)], the energy is preserved [region (b)] until the

wave reaches the PML [region (c)], where it is attenuated, after which grad-

ually there is no energy remaining in the domain [region (d)].
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is convolved numerically with the time-profile of the source,

using the code obtained from Ref. 41. The number of grid

nodes is 400 (to allow the wavefronts evolve sufficiently to

capture all types of the waves as discussed below) in each

direction with equal grid spacing of 15 m, which corresponds

to 8 points per minimum wavelengths (PPMW). Figure 4

shows the comparison of the results of the k-space method

and the analytical solution for CFL¼ 0.25, which shows

excellent agreement.

First, in order to assess the temporal accuracy and stabil-

ity, the method is compared with the staggered leapfrog

pseudospectral (PSTD) method, in which the time integra-

tion is implemented using the classical finite differencing.

For this purpose, the CFL number (which in essence is repre-

senting the size of the timestep) was varied from 0.1 up to

1.4 to measure the accuracy of each of the schemes. The effi-

ciency of the k-space approach becomes apparent when the

L2 error of the time series is plotted versus various choices

of CFL for both the k-space and the staggered leapfrog meth-

ods. This is shown in Fig. 5. It is not surprising that for small

timesteps, both numerical methods are accurate, but once a

larger CFL is chosen, the leapfrog PSTD becomes inaccurate

and eventually unstable. Note that the L2 errors for the

leapfrog PSTD method are not given for the CFL numbers

above 0.5 because the computation becomes severely unsta-

ble for higher CFL numbers while, the k-space method

remains stable. The error of the k-space method does

increase as the timestep increases, but much more slowly.

In the second step, the spatial accuracy of the method is

also verified by making comparisons with the second and

fourth-order finite difference time domain (FDTD)

schemes13,14 of the same model problem (i.e., stress-velocity

formulation) of elastodynamics. The codes for this purpose

were obtained from Ref. 42. The error of each method was

evaluated against the analytical solution for different points

per minimum wavelengths (from 2 up to 15). To realize this,

the grid spacing was varied accordingly from 60 m to 8 m

and the CFL number was set to 0.2 to ensure a sufficient

temporal accuracy for each of the methods. Figure 6 shows

the trend of the L2 error versus the choices of the PPMW. As

evident, even compared with the fourth-order FDTD, the

k-space method has a major improvement in accuracy for the

same PPMW, up to about 7 PPMW. Of course, for large

PPMW all the methods converge to the exact solution but as

far as the computational efficiency is concerned, the k-space

method can result in significant reduction in the computa-

tional effort for a same degree of accuracy, especially in

large scale problems.

For completeness, a snapshot of propagation of the

absolute value of the velocity field is also presented in Fig. 7

in the dB scale. Several wavefronts are clearly distinguish-

able. These waves are labeled as “a,” Direct Wave; “b,”

Reflected Wave; “c,” Head Wave; “d,” Transmitted Com-

pressional Wave; and “e,” Transmitted Shear Wave.

C. Heterogeneous medium: Scattering of plane waves
by cylindrical inclusions

An example of scattering of compressional plane waves

by a cylindrical inclusion is modeled. In this example, the

FIG. 4. Velocity components time-series at the receiver for the example of

an explosive source above a fluid-solid interface (Sec. IV B). Analytical so-

lution (solid), k-space method (circles). (a) Horizontal particle velocity. (b)

Vertical particle velocity.

FIG. 5. Comparison of accuracy of the k-space method and the staggered

leapfrog pseudospectral method: L2 error of the “measured” time series as a

function of CFL number.
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scattering of elastic waves from an elastic cylindrical fiber is

modeled and the results are compared with the analytical so-

lution. The cylindrical inclusion is a Silicon Carbide fiber

imbedded in a Titanium alloy matrix, which is a composite

material of interest in aerospace applications. The properties

of the matrix are given as cp ¼ 4500 m s�1, cs ¼ 2000 m s�1

and q ¼ 4800 kg m�3 and the fiber as cp ¼10 000 m s�1,

cs ¼ 4100 m s�1 and q ¼ 2800 kg m�3. The excitation is a

pulsed plane wave with the time profile of the derivative of a

Gaussian, with the center frequency a ¼ 5 MHz and the

time delay to ¼ 300 ns. The adjustments of the PML are sim-

ilar to the previous examples; however, to efficiently model

a plane wave propagating along the horizontal direction,

the PML is switched off on the top and bottom edges of the

domain. This is necessary to avoid the diffraction resulting

from the two end nodes of the line of source points, therefore

to create a plane wave consistent with the theoretical

definition of pulsed plane waves. However, in the stimula-

tion of plane wave scattering from cylindrical inclusions,

since periodic boundary conditions have been used, the dura-

tion of the simulation is limited to the time when the points

being monitored have not been contaminated by the wrapped

wave field. In the example shown here it has been ensured

that the results are not affected by this limitation. The num-

ber of grid nodes is 256 in each direction with equal grid

spacing of 50 lm (this corresponds to 9 points per minimum

wavelength in the medium). The CFL is considered as 0.25

FIG. 6. Comparison of accuracy of the k-space method and the 2nd and 4th

order FDTD methods: L2 error of the “measured” time series as a function

of PPMW number.

FIG. 7. Snapshot of the absolute value of the velocity field in the dB scale

at time t¼ 1.47 s for the example in Fig. 4. Various wavetypes are clearly

distinguishable: (a) direct and (b) reflected P-waves in the fluid, (c) head

waves, (d) transmitted P waves in the solid, and (e) S-waves (converted

from P-waves) in the solid. (f) Demonstrates the critical angle.

FIG. 8. Amplitude of the (a) horizontal and (b) vertical displacements at a

distance of 3a (where a is the radius of the scatterer) at 5 MHz. Analytical

solution (solid), k-space method (circles).
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for a satisfactory degree of accuracy. The radius of the scat-

terer in is assumed to be 1.2 mm.

The comparisons of the frequency domain analytical so-

lution given by Ref. 43 and the numerical results for both the

vertical and the horizontal displacements are presented in

Fig. 8. In order to obtain the numerical results in the fre-

quency domain, a broad band pulse was used, and the scat-

tered field at r ¼ 3:6 mm was transformed to the frequency

domain. The results were then compared for an arbitrary fre-

quency of 500 kHz, and show excellent agreement. Snap-

shots of propagation of the wavefronts for the net velocity

amplitude are presented in Fig. 9 in the dB scale.

This example shows that the presented k-space method

can conveniently handle scattering problems of interest in

several fields, and can result in significant efficiency gains

compared to other methods such as FD, especially when the

scattering effects of complex geometries are to be investi-

gated. This is of interest in many different applications,

including ultrasonic Non-Destructive Evaluation (NDE) of

inhomogeneous materials with complex microstructure,

ultrasound scattering from solid particles in colloidal sys-

tems, seismology, geophysics and biomedical engineering.

V. DISCUSSION

The k-space model presented here for elastic waves can be

significantly more efficient than conventional finite element and

FD methods, and even pseudo-spectral models. Like PSTD

models, the k-space method describes the high-frequency elastic

waves in a Fourier basis so requires fewer mesh points per

wavelength than FD methods. However, the use of the k-space

adjustment permits larger time steps without reducing accuracy

FIG. 9. Snapshots of absolute value velocity field in the dB scale for the example of scattering of a pulsed plane wave by a single elastic cylindrical fiber

imbedded in an elastic matrix (Sec. IV C) at times t¼ 1.31, 1.5, 1.7 and 2.25 ls (the incident plane wave is propagating from left to right).
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or introducing instability. The method maintains the advantages

of the previous acoustic and elastic k-space methods; like those,

the present method is temporally and spatially exact for homo-

geneous media, and spectrally accurate in space for smoothly

varying heterogeneous media. In practice, it is still useful for

modeling non-smooth media, although in such cases more than

two PPW are typically required.

When the heterogeneous elastic wave equation [Eq. (7)]

is re-written in the form of the stress-velocity formulation

[Eqs. (5) and (6)], the spatial derivatives of the medium

properties (i.e., density, and compressional and shear wave

speeds) are eliminated. In such cases, first order operators

are applied for the spectral calculation of the spatial deriva-

tives of the field variables. In comparison with Liu’s second

order k-space approach,30 both methods essentially have the

same accuracy for homogenous media since they are mathe-

matically identical. On the one hand, Liu’s method requires

computation and storage of only the displacement fields,

while the present method requires computation and storage

of the stresses as well as the velocity components. However,

the first order k-space method has the capability of conven-

iently incorporating PML absorbing boundary conditions.

For large computations, the high performance of the PML

allows the grid size to be substantially reduced without intro-

duction of wraparound or boundary-reflection errors, so that

the present k-space method can often perform more effi-

ciently, especially in three-dimensional problems.

The developed k-space method could also be thought of

as a modified leapfrog pseudospectral (PSTD) method for the

stress-velocity formulation of elastodynamics. The modifica-

tion is via introducing two temporal propagators, each of

which is associated with propagation of one mode. In leapfrog

pseudospectral methods, although the first order spatial deriva-

tives are accurately calculated using the fast Fourier transform

(FFT), for higher degrees of accuracy schemes such as

Adams–Bashforth iteration are commonly required.44,45 The

temporal correction provided by the k-space method elimi-

nates the need for higher-order time schemes. However, the

previous studies have shown that the pseudospectral methods

employing fourth-order Adams-Bashforth time integration

shows trends similar to that of PSTD in Fig. 5.46,47

The other advantages of this method are (a) the ability of

being used for modeling the acoustic medium by simply let-

ting the shear speed be zero, and more importantly, (b) the

capability of efficiently and accurately modeling interactions

of elastic and fluid media with significant savings in computa-

tions compared to other approaches such as Virieux’s stress-

velocity FD method.13 For highly heterogeneous media, where

discontinuities exist in medium properties, numerical artifacts

(Gibbs phenomena) may arise from applying FFTs. The

resulting inaccuracies could be minimized by smoothing the

media using an appropriate smoothing algorithm such as a

spatial-frequency domain Hanning window.

VI. SUMMARY

A new k-space method for numerical modeling of elastic

waves, using the first order stress-velocity formulation, has

been described. The exact second order k-space solution has

been derived for homogenous media, and then, the leapfrog

pseudospectral scheme for time integration has been modified

with the k-space second order operators, which makes time

integration more stable. The k-space second order operators,

when decomposed into first order operators were applied to

discretize the stress-velocity equations for modeling elastic

wave propagation in heterogeneous media. Staggered spatial

and temporal grids were used. The step by step formulation of

the method when incorporating the staggered grids has been

described and a new model that can incorporate perfectly

matched layers (PMLs) as the absorbing boundary conditions

has been explained. For validation of the method, examples of

propagation of elastic waves in homogenous and heterogene-

ous media have been compared with the analytical solutions

and the results have been discussed with regards to the accu-

racy and efficiency of the method. Further examples have

been given to show the efficiency and flexibility of the method

when applied to large scale scattering problems.

APPENDIX

To avoid confusion with the use of subscripts when devel-

oping the full 3D relations of the k-space method by using

Eqs. (37) and (38) combined with the PML [Eqs. (40) and (41)],

the full development is presented here for arbitrary selections of

velocity and stress components in the three-dimensional space.

As each field is subdivided into compressional and shear wave

splits, the following development is represented for both by

using superscripts. As an example of the velocity fields, vx is

presented; rxx and rxy are fully developed as examples of the

stress tensor field. Denoting xþ ¼ xþ Dx=2, yþ ¼ yþ Dy=2,

zþ ¼ zþDz=2, tþ ¼ tþDt=2, t� ¼ t�Dt=2, and tþþ ¼ tþDt,

(1) Velocity field ðvxÞ:

xv
p;s
x ðxþ; y; z; tþÞ

¼ eaxDt=2

(
eaxDt=2

xv
p;s
x ðxþ; y; z; t�Þ

þ Dt

qðxþ; y; zÞ
@p;srp;s

xx ðx; y; z; tÞ
@xþ

 !)
;

yv
p;s
x ðxþ;y;z; tþÞ

¼ eayDt=2

(
eayDt=2

yv
p;s
x ðxþ;y;z; t�Þ

þ Dt

qðxþ;y;zÞ

 
@p;srp;s

xy

�
xþ;yþ;z; t

�
@y�

!)
;

zv
p;s
x ðxþ;y;z; tþÞ

¼ eazDt=2

(
eazDt=2

zv
p;s
x ðxþ;y;z; t�Þ

þ Dt

qðxþ;y;zÞ

 
@p;srp;s

xz

�
xþ;y;zþ; t

�
@z�

!)
;
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vx ¼ xv
p
x þ yv

p
x þ zv

p
x þ xv

s
x þ yv

s
x þ zv

s
x:

(2) Normal stress field ðrxxÞ:

xr
p;s
xx ðx;y;z; tþþÞ¼ eaxDt=2

(
eaxDt=2

xr
p;s
xx ðx;y;z;tÞ

þDt½kðx;y;zÞþ2lðx;y;zÞ�

�
 
@p;svp;s

x

�
xþ;y;z;tþ

�
@x�

!)
;

yr
p;s
xx ðx; y; z; tþþÞ

¼ eayDt=2

(
eayDt=2

yr
p;s
xx ðx; y; z; tÞ þDtkðx; y; zÞ

�
@p;svp;s

y

�
x; yþ; z; tþ

�
@y�

 !)
;

zr
p;s
xx ðx; y; z; tþþÞ

¼ eazDt=2

(
eazDt=2

zr
p;s
xx ðx; y; z; tÞ þ Dtkðx; y; zÞ

�
 
@p;svp;s

z

�
x; y; zþ; tþ

�
@z�

!)
;

rxx ¼ xr
p
xx þ yr

p
xx þ zr

p
xx þ xr

s
xx þ yr

s
xx þ zr

s
xx:

(3) Shear Stress field ðrxyÞ:

xr
p;s
xy ðxþ; yþ; z; tþþÞ

¼ eaxDt=2

(
eaxDt=2

xr
p;s
xy ðxþ; yþ; z; tÞ þ Dtl xþ; yþ; zð Þ

�
@p;svp;s

y

�
x; yþ; z; tþ

�
@xþ

 !)
;

yr
p;s
xy ðxþ; yþ; z; tþþÞ

¼ eayDt=2

(
eayDt=2

yr
p;s
xy ðxþ; yþ; z; tÞ þ Dtl xþ; yþ; zð Þ

�
 
@p;svp;s

x

�
xþ; y; z; tþ

�
@yþ

!)
;

rxy ¼ xr
p
xy þ yr

p
xy þ xr

s
xy þ yr

s
xy zr

p
xy ¼ zr

s
xy ¼ 0:

Other field components, velocities vy and vz, and stresses ryy,

rzz, rxz, and ryz could be developed in a similar manner.
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