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Biomedical applications of photoacoustics, in particular photoacoustic tomography, require efficient
models of photoacoustic propagation that can incorporate realistic properties of soft tissue, such as
acoustic inhomogeneities both for purposes of simulation and for use in model-based image
reconstruction methods. k-space methods are well suited to modeling high-frequency acoustics
applications as they require fewer mesh points per wavelength than conventional finite element and
finite difference models, and larger time steps can be taken without a loss of stability or accuracy.
They are also straighforward to encode numerically, making them appealing as a general tool. The
rationale behind k-space methods and the k-space approach to the numerical modeling of
photoacoustic waves in fluids are covered in this paper. Three existing k-space models are applied
to photoacoustics and demonstrated with examples: an exact model for homogeneous media, a
second-order model that can take into account heterogeneous media, and a first-order model that can

incorporate absorbing boundary conditions.
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I. INTRODUCTION

The photoacoustic (PA) effect, in which the absorption
of light leads to the generation of an acoustic wave via the
thermoelastic expansion of the absorbing region, has found
application in many fields,' some of the most important be-
ing spectroscopy,z’3 microscopy,“f6 and biomedicine.” Bio-
medical photoacoustic tomography (PAT), in particular, has
received increasing attention in recent years.g’9 Both clinical
and life sciences applications have been proposed, including
imaging of the breast,10 vasculature,11 and small animals.'>"?
As soft tissue is usually highly optically scattering, imaging
to high resolution using purely optical means is difficult.
However, for acoustic waves, even up to tens of megahertz,
the scattering is considerably lower. PAT can therefore com-
bine the good resolution of ultrasound (<100 wm) with the
high contrast and spectroscopic advantages offered by im-
ages related to optical absorption.

Most PAT reconstruction algorithms assume that both
the sound speed and density in the sample are uniform.” '
which is not true of soft tissue in general, particularly at high
frequencies. The extent to which the naturally occurring
acoustic heterogeneities distort the PAT images remains
largely an open question. One way to answer such questions
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without undertaking extensive experimental studies is to
simulate the experimental measurements using a numerical
forward model, so that the effect of heterogeneities on image
resolution and artifact generation can be studied systemati-
cally. A further application of a photoacoustic forward model
is in model-based image reconstruction algorithms for
PAT.>** Model-based image reconstructions make no as-
sumptions of acoustic homogeneity, and form an image by
iteratively updating a forward model. For iterative recon-
struction algorithms such as this to be practical, it is impera-
tive that the forward model is computationally efficient.

A numerical, time domain, model based on Poisson’s
solution to the wave equation has been widely used for cal-
culating the pressure time history at a point from a photoa-
coustically generated source in homogeneous media. >
This model has also been adapted to accommodate small
sound speed heterogeneities.23 More recently, finite
difference”  and (frequency domain) finite element
methods®® have been presented as techniques for modeling
photoacoustics in heterogeneous media. This paper is con-
cerned with wave number domain or k-space methods, which
can achieve the same accuracy as the above-mentioned meth-
ods despite using a much coarser spatial grid, and can take
much larger time steps without causing instabilities. k-space
methods are therefore computationally efficient, and are
ideal as forward models in model-based image reconstruc-
tion algorithms for PAT. In addition to being efficient and
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accurate, numerical k-space models in both two and three
dimensions are straightforward to encode. In view of these
advantages, it is surprising that k-space methods are not
more widely used for studying photoacoustic propagation. To
date, photoacoustic propagation has been calculated using
k-space methods only for homogeneous media.”' Here we
review two further k-space models,***? originally derived to
describe ultrasonic scattering due to heterogeneous media,
and by adding a photoacoustic source term to each, demon-
strate their use in photoacoustics with several examples.

Il. FORWARD MODELS IN PHOTOACOUSTICS
A. Photoacoustic wave equation

The forward or direct problem in photoacoustics is to
predict the acoustic field as a function of time following the
absorption of an optical pulse. If a region of a fluid is heated
by the absorption of a pulse of light, then a sound wave is
generated. In a stationary fluid, under conditions whereby the
sound generation mechanism is thermoelastic and terms con-
taining the viscosity and thermal conductivity are
negligible—a regime called thermal confinement—the
acoustic pressure, p(x,f), in the linear acoustic approxima-
tion and in the absence of absorption, obeys

& 1

a—tl;—czpv-<;Vp>=F—, (1)
where the sound speed c(x) and density p(x) vary with po-
sition x. I' is a dimensionless constant called the Griineisen
parameter, which indicates the efficiency of conversion of
absorbed optical energy (heat) to pressure, and is defined as
r=c2g/ C,, where (3 is the volume thermal expansivity and
C,, is the specific heat capacity. H(x, ) is the heat energy per
unit volume and per unit time deposited in the fluid and, like
the pressure p, will depend, in general, on both position x
and time . When the sound speed and density are uniform,
so ¢(x)=cq and p(x)=py, then Eq. (1) becomes

(lor* - céVz)p =1 dH/ot. (2)

If the photoacoustic source term H(x,?) is stationary, then it
may be separated into spatial and temporal components
H(x,1)=H (x)H,(t), where H,(x) is the heat deposited in the
fluid per unit volume, and H,(¢) describes the temporal shape
of the pulse, normalized so that the integral of H, is unity.
For instance, if the heating pulse is assumed Gaussian then
~(1/7)?
H()=——. (3)

™I

As 7—0 this pulse H,(t) — &(t) so if ¢7is much shorter than
a typical distance across the heated region, a regime known
as “stress confinement,” then the PA source term may be
considered to be instantaneous and well-represented by the
time-derivative of a ¢ function. In this case, the forward
problem reduces to the initial value problem (IVP) for the
homogeneous wave equation

(*or® - céVz)p =0 4)

with initial conditions
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Plieo=TH,,  dpldt],=0. (5)

In the examples below we assume x € R2, as it is more
straightforward to display images of a two-dimensional (2D)
wave field, but all the algorithms may be easily extended to
three spatial dimensions.

B. Models based on Poisson’s solution

Under conditions of thermal confinement, i.e., instanta-
neous heating, Poisson’s solution to the IVP in Egs. (4) and
(5) may be used to calculate the acoustic field

P H&)
47TCO(9t A R

p(x,1) = dA, (6)

where R=|x—x'|, and A(¢) is the surface on which R=cyt and
is thus a function of time. The optical excitation pulse is
taken to occur at t=0. This equation has been implemented
numerically by a number of authors™*® by defining H,(x)/R
on a mesh and summing the contributions that lie within the
two circles A(r) and A(z+Ar) for t=0, At, ... . The resulting
time series is numerically differentiated to give the acoustic
pressure. This model was extended to take into account the
spatial averaging effect of a finite-sized detector by Kostli
and Beard,* by convolving the detector volume D(x) with
H,(x) prior to carrying out the integration over A. Xu and
Wang23 investigated the effects of sound speed heterogene-
ities on breast thermoacoustic tomography by developing
analytical expressions for the effect on the amplitude and
delay of a pulse. They concluded that the effect of a time
delay is more important in imaging, and so adapted Pois-
son’s model to incorporate a first-order correction for differ-
ent times-of-flight through the heterogeneous medium, by
warping the surface A.

The advantage of this model is that it is intuitive, and
can be an aid to visualizing the forward problem. It is, how-
ever, computationally inefficient, and limited in the degree to
which it can model boundaries or heterogeneous acoustic
properties. For more complex situations, one approach is to
turn to two well-established tools of numerical modeling:
finite element and finite difference methods.

C. Finite element and finite difference methods

The finite element (FE) method is a popular and power-
ful method for calculating numerical solutions to partial dif-
ferential equations because of its flexibility, accuracy, and
rigorous mathematical foundations. In this method, the solu-
tion is represented by a linear combination of N-dimensional
basis functions defined on the computational domain, and the
unknown amplitudes of these functions are calculated to give
a solution, exact at N nodes and approximate in between.
The flexibility in the choice of basis functions allows do-
mains and heterogeneities of any shape to be well-
approximated, and, more important, the basis functions can
be chosen to have support over only a small part of the
domain, so calculation of the unknown amplitudes can be
reduced to a sparse matrix equation for which there are effi-
cient solvers available. Heterogeneous material properties
can be straightforwardly included, and the well-developed
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mathematical fundamentals of the technique allow thorough
analyses of errors and sensitivities. Encoding the FE method,
however, is not as straightforward as the finite difference
(FD) or k-space methods discussed in the following, al-
though many commercial packages are now available to ease
this burden. Another disadvantage is that, when solving wave
problems with the FE method, about 10 nodes per wave-
length are required to represent the field accurately, so high-
frequency, large-scale, applications soon become intractable.
Jiang et al.*® have used the FE method to find low frequency
solutions of a PA Helmholtz-like equation which includes
terms for sound speed heterogeneity and acoustic absorption.

Another group of techniques that is in widespread use
for finding numerical solutions to partial differential equa-
tions is that of finite differences, in which derivatives in the
partial differential equation are approximated by differences,
thus converting the PDE into a difference equation which
can be solved numerically. FD models are less flexible than
FE models because, usually, a regular computational mesh
must be used. The high-frequency sampling requirement,
which is disadvantageous to FE methods, is a problem here
too. Nevertheless, the popularity of FD methods endures,
perhaps because of their conceptual simplicity. Huang et al”’
describe a FD time-domain simulation of PA propagation,
which includes nonlinear terms and dissipative effects, and is
therefore more general than any of the other models de-
scribed in this paper, although the underlying equations are
correspondingly more complex. For biomedical applications,
the assumptions of linearity and thermal confinement—
which are required for all the models in this paper—seem to
be valid, and allow considerable simplification of the gov-
erning equations, and therefore of the model.

For time domain problems, it is common practice to use
a FD approximation to the time derivative, whether the spa-
tial part of the solution is solved using FD or FE methods.
Approximating the time derivative in this way can introduce
numerical dispersion, in which the speed of the wave de-
pends, erroneously, on its frequency, thus distorting the
shape of pulses. To avoid this, small time steps must be
taken, further reducing the efficiency of both FE and FD time
domain models.

D. Pseudospectral and k-space models

The FE and FD methods, although excellent for many
applications, become cumbersome and slow when modeling
large scale, high-frequency acoustics applications, due to the
requirements for many mesh points for wavelength, and
small time steps required to minimize unwanted dispersion.
In this section we briefly describe the pseudospectral (PS)
method, which can help reduce the first of these problems,
and k-space propagators, to overcome the second.

In a simple FD scheme, the gradient of the field is esti-
mated by fitting a straight line between its values at two
mesh points. A better estimate of the gradient could be ob-
tained by fitting a higher-order polynomial to a greater num-
ber of points, and calculating the derivative of the polyno-
mial. The more points used, the higher the degree of
polynomial required, and the more accurate the estimate of
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the derivative. The PS method takes this idea further and fits
a Fourier series to all the data on each line of the mesh. This
choice of interpolating function assumes that the solution is
periodic (the values and the derivatives at both ends of each
line of the mesh are the same) which will rarely be the case.
The “wrapping” effects of this assumption are common to PS
and k-space methods and are seen in the example in Sec. IV
A. Such effects can often be ameliorated using absorbing
boundary conditions (see Sec. V and references therein).
There are two significant advantages to using Fourier series.
The first is that the amplitudes of the Fourier components
can be calculated efficiently using the Fast Fourier transform
(FFT), and the gradient calculated simply as
F ik F{p(x)}}, where F{} is a Fourier transform and
F~ Y} its inverse. The second advantage is that the basis
functions assumed by the FT are sinusoidal, so only two
nodes per wavelength are required in order to describe a
wave, rather than 10+ in the FE and FD methods.

Now, both PS time-domain (PSTD) and k-space meth-
ods calculate the spatial gradients using FFTs, as just de-
scribed. However, whereas the PSTD method approximates
the temporal gradient with a finite difference, in k-space
methods the field is propagated forward in time according to
a k-space propagator, which is exact for homogeneous me-
dia, and, for heterogeneous media, allows much larger time
steps for similar accuracy and stability to FD
methods. > In Ref. 39 the k-space method is shown to
give more accurate results than a second-order FD method
for elastic wave propagation even when the time step is
larger. References 32 and 33 describe benchmark studies of
the accuracy of the k-space method in comparison with a
leapfrog PSTD method and a time domain FD method. Ex-
amples of propagation through samples realistic of soft tissue
were calculated using each model for a range of values of the
Courant-Friedrichs-Lewy number, CFL=c,A#/Ax, and it is
shown that the error norm increases much more slowly with
CFL for the k-space method than for either of the other two
methods. It was also shown that the number of mesh points
per wavelength required for a given accuracy is much less
(=3 as opposed to =10) for the k-space method than for the
FD method.

As well as being efficient by virtue of the reduced point-
per-wavelength requirement, the use of the FFT to calculate
the gradients in k space, and larger time steps made possible
by the k-space time propagator, another attraction of k-space
models is that they are straightforward to encode. In this
paper, three efficient, k-space forward models of photoacous-
tic wave generation and propagation are described. All three
calculate the acoustic field as a function of time, given an
arbitrary distribution of absorbed optical energy. This first
model applies only to homogeneous media,” whereas the
second®” and third® include the effects of acoustic heteroge-
neities, i.e., spatial variations in the sound speed and density.
The differences between the second and third are that the
latter can incorporate absorbing boundary conditions and
bulk acoustic absorption.

Cox et al.: k-space models in photoacoustics



lll. -SPACE MODEL FOR A HOMOGENEOUS
MEDIUM

When the sound speed and density are constant every-
where, then the photoacoustic waves propagate according to
Eq. (2). Following spatial Fourier transformation, Eq. (2)
becomes an ODE in time, describing the motion of plane
waves with wave vector k=(k,,k,),

&’ .
(; + (Cok)z)ﬁ =5(1), (7)

where the caret indicates a function in k space, and k is the
modulus of k. The source term S(¢) is given by

. . OH
S(t) = FHXa—t’. (8)

The Green’s function solution to Eq. (7) is

pk,1) = f g(t—1")S(¢")ar’ )
0
] A ’ @ ’ ’
=Ffog(t—t )dt, (¢")ar', (10)

where the Green’s function § is a solution to d?g/df’
+(cok)?g=4(1) and is given by

<0

o
g(k’t)_{sin(cokt)/(cok), 1=0. (1

When H,(r)= &(t), an instantaneous pulse at =0, the solution
for the pressure becomes

pk,t) = FI:IXJ (—Sin(cok(t_ tr”)ﬁ’(r’)dt’

Cok
=TH_ cos(cokt) (12)

so the acoustic field at time ¢ following an optical pulse at
t=0 can be calculated using

p(x,1) = TFYH (k)cos(cok)}. (13)

This is an exact solution, so the acoustic field can be calcu-
lated directly for any time ¢ without having to step through
the previous times from 7=0. In this sense, the cos(ckt) term
in Eq. (13) can be considered as an exact time propagator.
(To calculate pressure time histories on just a single plane
perpendicular to the axis of symmetry in a radially sym-
metric field, the vertical wave-number-frequency mapping
technique described in Cox and Beard” is considerably
more efficient.)

It is instructive to see that the solution in Eq. (13) can be
written as an explicitly time-stepping, finite-difference-style
solution, in which the field at r+Ar¢ is calculated from the
field at times ¢ and r—Ar. Consider the transformed field,
p(Kk), at the two times 7+ At and t—At:
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Pt + Ar) =TH_ cos(cok(t + A))

= FI:Ix(cos(cokt)cos(cokAt)
— sin(cokt)sin(cokAr)), (14)

p(t— A1) =TH, cos(cok(t — A1)
= FI:Ix(cos(cokt)cos(cokAt)
+ sin(cokt)sin(cokAr)). (15)

So,

p(t+Ar) + p(t—Ar) = 2FI:IX cos(cokt)cos(cokAt)
=2p(t)cos(cokAt)
=2p(1)(1 = 2 sin®(cokAt/2))  (16)

and rearranging gives

Plt+ A1) = 2p(t) + p(t — Ar) = — 4 sin®(cokAt/2)p(1) .
(17)

This is a time-stepping solution for which steps At of any
size may be used without introducing error. This is an exact
rearrangement of Eq. (13), so by using the initial conditions
ﬁ(—At):FI:IX cos(cokAr) and ﬁ(O):FI:Ix, exactly the same
solutions for any >0 will be calculated. By comparing
Eq. (17) to a pseudospectral, leapfrog FD scheme, based
on Eq. (7) in the absence of the source term,

plt+An) =2p(1) +p(t—Ar)
A7 -

~ (cok)*p(0) (18)

we can see that the 4 sin’(cykAt/2) term in Eq. (17) has
replaced the term (cykAr)? in Eq. (18). For small time
steps these are equal, but for larger time steps the latter
leads to numerical dispersion whereas the former provides
an exact, dispersion-free, solution. Of course, with
o-function heating, there is no need for such a time step-
ping scheme as we have an exact propagator for arbitrarily
large time steps, Eq. (13). Indeed, the solution for a finite-
duration Gaussian excitation pulse could be obtained by
multiplying the Fourier transform of Eq. (3) to the other
k-space terms in Eq. (13). However, when considering a
source with an arbitrary temporal pulse shape, or propa-
gation through heterogeneous media, a time-stepping
scheme may be required. We can extend the time-stepping
scheme in Eq. (17) to include a source with an arbitrary
pulse shape:

plt+ Ar) = 2p(t) + p(r — Ar) = — 4 sin’(cokAt/2) (ﬁ(t)

S(1) )
_(cok)2 . (19)
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FIG. 1. A collimated laser beam with a 6-mm-diam tophat profile, indicated
with an arrow, is incident on an optically absorbing half-space, the surface
of which is marked by a dotted line. The optical absorption coefficient u,
=5 mm~'. The absorbed energy distribution decays exponentially from the
boundary according to the Beer-Lambert law. The laser fluence at the sur-
face was 10 mJ/cm? (i.e., 10 mJ/cm per cm into the plane of the paper).
The sound speed and density were 1500 m/s and 1000 kg/m?, respectively,
and the Griineisen parameter I'=0.11. The evolution of this acoustic field is
shown in Fig. 2.

A. Example: Laser beam incident on an absorbing
half-space

A two-dimensional (2D) example of a tophat laser beam
incident on a pure (nonscattering) absorber is used to dem-
onstrate the homogeneous model in Eq. (19). Figure 1 shows
the arrangement: A collimated laser beam with a
6 mm diameter tophat profile, indicated by an arrow, is inci-
dent on an optically absorbing half-space, the surface of
which is marked by a dotted line. The optical absorption
coefficient u,=5 mm™'. The absorbed optical energy results
in a spatially varying heating function, H,(x), which decays
exponentially from the boundary according to the Beer-
Lambert law, and is shown in Figs. 1 and 2 (top left) as a
dark region. As this example has 2D symmetry, with no
variation into or out of the plane of the paper, the tophat
beam effectively models a three-dimensional (3D) line
source. The laser fluence at the surface of the absorber was
set to 10 mJ/cm? (i.e., 10 mJ/cm per cm into the plane of
the paper). The sound speed and density were 1500 m/s and
1000 kg/m?, respectively, and the Griineisen parameter I’
=0.11, their values in water (the major constituent of soft
tissue). The 2D computational grid of 10 mm X 10 mm, was

divided into 600 X 600 squares, which limited the maximum
frequency to about 60 MHz. The absorbed energy distribu-
tion was smoothed to ensure there were no wave number
components higher than about 0.877/ Ax where Ax is the grid
spacing. The time r=0 was defined as the midway point of
the temporal heating pulse, Eq. (3), whose pulse width was
7=8.33 ns, and so the program was set to begin at a time
well before this so as to include all of the first half of the
pulse. The validity of the use of a Gaussian function to ap-
proximate the instantaneous, J-function, heat deposition is
examined in the following. All the models in this paper were
written in MATLAB (Release 13, The Mathworks, Inc.).

Figure 2 shows the pressure field as it evolves, at times
0, 0.33, 0.66, and 1 us following the laser pulse. This acous-
tic pressure field can be described as a combination of two
compressive plane waves and two circular, edge waves
which have a tensile component. The pressure as a function
of time for a point located at the point (-1,0) is shown in
Fig. 6.

B. Example: Line source with a Gaussian profile

The use of a Gaussian temporal function to approximate
a & function (instantaneous heating) is valid for a pulse
whose duration is much shorter than the acoustic travel time
across the region of support of the source H,. (The “stress
confinement” condition.) With the above example, this be-
comes the requirement that the pulse width 7< 1/(uyc)
=133 ns, so the condition was met. An implication is that the
less stringent assumption of “thermal confinement,” required
for Eq. (1) to hold, is also valid. To check this assumption, a
comparison has been made with an analytical solution.

Diebold and Sun®’ provide an analytical solution for an
infinitely long, cylindrical source distribution with a Gauss-
ian radial profile that is instantaneously deposited at r=0.
This can be modeled in 2D by assuming the axis of the
cylinder is directed perpendicular to the 2D plane. A com-
parison between Diebold’s solution and the homogeneous
k-space model shows that it is reasonable to model the tem-
poral dependence of the photoacoustic source term with a
Gaussian when the stress confinement condition applies. For
a source profile with a radial width =1 mm, the stress con-
finement condition is 7 0/cy=0.67 us. To calculate Fig. 3
7 was set to 0.01 us, well within this criterion. Figure 3
shows how the acoustic pressure varies with time at a point

-4 -4 -4 - -4
-3 -3 -3 -3
2 2 2 -2
= = | - =
Eo E o Eo Eo
1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 — 4 )
) 2 0 2 4 >y 2 0 2 4 S 2 0 2 4 i 2 0 2 4

mm

mm

FIG. 2. The evolution of the photoacoustic pressure field for the arrangement shown in Fig. 1. The acoustic pressure is shown at times =0, 0.33, 0.66, and
1 us following the laser pulse, calculated using the homogeneous model of Sec. III. The linear grey scale is from —10 kPa (white) to 40 kPa (black).
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FIG. 3. Acoustic pressure 3 mm off axis for an infinitely long impulsive
heating source with a Gaussian radial profile. Analytic solution (solid line)
which assumes instantaneous (& function) heat deposition, and k-space
model for a homogeneous medium (circles), which uses a Gaussian approxi-
mation to the temporal & function. When the stress confinement condition
holds, as in this case, this approximation gives good agreement. The Gauss-
ian radial width =1 mm.

3 mm off axis. The time series were calculated using Die-
bold’s solution (solid line) and the homogeneous k-space
model (circles), and they show good agreement. Additional
examples, comparing a model of photoacoustic propagation
based on Poisson’s solution, Eq. (6), to the k-space model of
Eq. (13) can be found in Cox and Beard.”’

IV. HETEROGENEOUS MEDIUM: SECOND-ORDER
k-SPACE MODEL

An accurate model of the propagation of PA waves in
tissue must include the effects of the sound speed and density
heterogeneities. We follow the approach taken by Mast et
al®? By defining a new variable f(x,7)=p(x,1)p(x)7"?,
sometimes called a Liouville transform, the wave equation
for inhomogeneous media, Eq. (1), may be rearranged into
the homogeneous form of the wave equation with effective
source terms due to sound speed and density heterogeneities
on the right-hand side:

1 &f 1(
S\ 4q

= 20
c%z?tz c% 20

V2f

dh fv)
+—+—,
at ot
where c is a fixed sound speed, usually chosen as the maxi-
mum of ¢(x) for reasons of stability. There are three terms on
the right-hand side corresponding to waves generated in
three different ways: at changes in density, Eq. (21), photoa-
coustically, Eq. (22), and at changes in sound speed, Eq.
(23):

q(x,1) = ¢\ p(x)V2(p(x) ") f(x,1), (1)

h(x,t) == p(x)""*T'H(x,1), (22)
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v(x,1) = (cé/c(x)2 - 1Df(x,1). (23)

As the heating pulse is assumed to be Gaussian, Eq. (3), the
photoacoustic source term becomes

oh(x,1 216717’
hx1) p—mmx(x)( — (24)
ot N

Now, by introducing the auxiliary field, w=f+uv, and trans-
forming from x space to k space, Eq. (20) may be rearranged
into the form

> s . Ok

7 = k)@= =g -~ (25)
where V2 has been replaced by —k>. Eliminating f from Egs.
(21) and (23) gives

4k, 1) = cgFHPX) (w(x,1) = v(x,1))}, (26)

0k, 1) = F{(1 = (c(®)/co)Iw(x,0)}, 27)

where we have used the shorthand p= p'?V?(p~""?). By com-
paring Eq. (25) with Egs. (7) and (19) we see that it may be
approximated by

w(k,z+ Ar) = 2w(k,t) + w(k,t — Ar)

s 2(c0kAz)[A A(c}+&fl/<9t)]
= Sin U—Ww B .
2 (C()k)

(28)

Given two initial conditions, Ww(k,—A¢) and w(k,0), this dif-
ference equation may be used to step the field w forward in
time. Here, both initial conditions are set to zero. In the
homogeneous limit, this gives exact solutions, and is equiva-
lent to Eq. (19).

So, with w(=A7)=w(0)=0 and Jh/Jt known for all ¢
from Eq. (24), the procedure for calculating the pressure field
as function of time using this model is as follows: For every
t calculate, in this order, 0(Kk,7) using Eq. (27), v(x,f) by
transforming 0, §(k,7) using Eq. (26), and w(k,7+Ar) using
Eq. (28). The acoustic pressure may then be obtained from
p(x,0)=p"A(w(x,0)-v(x,1)).

Examples including acoustic heterogeneities. The ex-
ample of a light pulse with a tophat profile, used in Sec. III A
to demonstrate the homogeneous model of Eq. (19), is
adapted to show the effect of an acoustic homogeneity on the
field, using the above-described model. A single, circular het-
erogeneity with sound speed and density half of their values
in the surrounding tissue was included as shown in Fig. 4.
All other parameters in the example were left unchanged.
While such a great change in sound speed is rare within soft
tissue, even greater contrasts can be found at air or vapor
pockets. The main reason for choosing a large contrast here
was in order to produce a significant reflection and distortion
of the wavefront to best show the capabilities of the model.
The density and sound speed distributions were smoothed to
remove wavenumber components higher than about
0.877/Ax. The time increment Ar was set to 2.78 ns, well
inside the Nyquist requirement (Sec. VI). This model took
about 2 s per time step on a 2 GHz PC with 768 Mbytes
RAM.
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FIG. 4. An example identical to Fig. 1, except for the circular heterogeneity
with sound speed and density half that of the surrounding medium.

Figure 5, like Fig. 2, shows the evolution of the acoustic
wave with time. The acoustic pressure is shown at times ¢
=0, 0.33, 0.66 and 1 us following the laser pulse. The
slower passage of the wavefront through the circular region
of lower sound speed, and the resulting distortion of the
plane wavefront is clearly visible. The wave reflected from
the heterogeneity can also be seen. Figure 6 shows time se-
ries calculated for a point 1 mm to the left of the center of
the image, for both the acoustically homogeneous (solid line)
and heterogeneous (dashed line) cases. The reflected wave
can be seen arriving at about 1.5 us, in between the plane
and edge wave components of the initial wavefield.

The tophat example, Figs. 5 and 6, was chosen to show
clearly the wavefront distortion and reflection caused by a
single acoustic heterogeneity. The following example shows
the acoustic radiation from three circular sources, which
could, for instance, be used to represent blood vessels. Fig-
ure 7 shows the pressure field at times of 0, 0.33, 0.66,...
2.33 us. The sound speed and density are 1500 m/s and
1000 kg/m?, respectively, and the position of a rectangular
heterogeneity (c=1000 m/s,p=750 kg/m?), which distorts
the circular wavefront from the right-most tube, is indicated
by a dotted line. It is a result of the periodicity inherent in the
FFT, that when a wavefront reaches the boundary of the
image, it “wraps around” and appears on the other side. This
can be seen with the wave from the leftmost source, which
appears on the right-hand side of the last three frames. For

25 T T T T T

20t 1

plane wave

acoustic pressure (kPa)

s} reflection b
edge waves
_10 . . . . .
0 0.5 1 15 2 25 3
time {us)

FIG. 6. Pressure time histories calculated for the point (=1,0) (see Figs. 2
and 5), for both the acoustically homogeneous (solid line) and heteroge-
neous (dashed line) cases. The additional wave, reflected from the acoustic
inhomogeneity, is clear.

calculations of transient fields, it may be possible to use a
sufficiently large computational domain to avoid this wrap-
around problem, or if only the pressure at a single point is
required, to stop the calculations before the first arrival of a
wrapped wave reaches that point. Nevertheless, for simulat-
ing measurements over an array it is not ideal to have to use
a mesh considerably larger than the array in order to avoid
the wrapped wave. For 3D problems, the number of elements
in the mesh increases by eight times each time the linear
dimensions are doubled, so the size of the computation soon
becomes very large. Section V describes a first-order model
for which absorbing boundary conditions can be prescribed,
thus removing this problem.

V. HETEROGENEOUS MEDIUM: FIRST-ORDER
k-SPACE MODEL

Both Egs. (17) and (18) are discretizations of &*p/dt>
=—(cok)p. Both models use —k%p in place of the Laplacian,
V2, but whereas Eq. (17) uses a k-space time propagator, Eq.
(18) employs a finite-difference approximation to time de-
rivative. By rewriting Eq. (17) as

-4 -4 4 — -4
-3 -3 -3 -3
2 -2 2| -2
-1 -1 -1 =1
Eio Eo E o Eo (
1 1 1 1
2 2 2 2
3 3 3 3
4 4] 4 — 4]
R -2 0 2 4 4 -2 0 2 4 R -2 0 2 4 -4 -2 0 2 4
mm mm mm mm

FIG. 5. The evolution of the photoacoustic pressure field for the arrangement shown in Fig. 4, including a circular heterogeneity. The acoustic pressure is
shown at times 1=0, 0.33, 0.66, and 1 us following the laser pulse, calculated using the homogeneous model of Sec. III. The linear grey scale is from —10 kPa
(white) to 40 kPa (black). The wave reflected from the heterogeneity, and the distorted wave front due to the reduced sound speed are clearly visible.
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FIG. 7. The acoustic pressure field radiated from three circular photoacoustic sources is shown every 1/3 us following an excitation light pulse. The sound
speed and density are 1500 m/s and 1000 kg/m?, respectively. The position of a rectangular acoustic heterogeneity (1000 m/s, 750 kg/m?), which distorts the
wavefront on the right of the image, is indicated by a dotted line. The periodic boundary conditions implicit in this model cause the acoustic waves to wrap

around when it reaches the edge of the computational domain.

p(t+ Ar) = 2p(1) + p(r = Ar)
A7 sinc?(cokAt/2)

=~ (cok)*p(1) (29)

it is clear that—so far as the time derivative is concerned—
the k-space models described above can be thought of as FD
models in which Az? has been replaced by Ar? sinc?(cokAt/2)
in the approximation of ¢*/df>. We can also see that re-
placing the spatial derivative —k> with —k? sinc?(cokAt/2)
would give the same solution. Exact solutions for the ho-
mogeneous case can be therefore be obtained by replacing
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the Laplacian with —k? sinc’(cykAt/2) and calculating the
temporal derivative using standard finite-differences. This
observation is the motivation for the model described be-
low.

While the two models described in Secs. III and IV are
based on second-order equations, this k-space model, first
described by Tabei et al.,33 is based instead on the linearized
conservation of momentum and mass equations. These first-
order equations, with additional terms which act as an ab-
sorbing boundary condition (ABC) to overcome the wrap-
around problem, are
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FIG. 8. The acoustic pressure field radiated from three circular photoacous-
tic sources, as shown in Fig. 7, at 2 and 2.33 us following an excitation light
pulse. The sound speed and density are 1500 m/s and 1000 kg/m?, respec-
tively. The position of a rectangular acoustic heterogeneity
(1000 m/s,750 kg/m?), which distorts the wave front on the right of the
image, is indicated by a dotted line. In contrast to the final two frames of
Fig. 7, the acoustic waves do not wrap around when they reach the edge of
the computational domain, but are rather attenuated to almost zero, due to
the absorbing boundary condition.

dJ \Y%
n__ VL (30)
ot p
p 2
E:—pc V'U+FH—(ax+ay)p9 (31)

where I"H is the PA source term and the two terms contain-
ing a=(a,(x),a,(x)) represent the ABC. The principle ad-
vantage of using two first-order equations is that the vector
u=(u,,u,) appears explicitly and it is therefore possible to
introduce direction-dependent absorption, which cannot be
done when only the scalar p is available. By defining the
absorption e to be zero everywhere except in a layer close to
the edges of the domain, and in that layer to be zero in all
directions except normal to the boundary, the amplitude of
the waves leaving the domain (and only those leaving the
domain) can be reduced to virtually nothing, and the wrap-
around problem is eliminated. For instance, for a rectangular
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FIG. 9. The tissue properties for the example shown in Fig. 10. The sound
speed and density of each region were set to: muscle, 1590 m/s and
1040 kg/m?, fat, 1450 m/s and 900 kg/m’, marrow, 1480 m/s and
1000 kg/m?, and bone, 3200 m/s and 1900 kg/m?.

domain, a, would be chosen to be zero everywhere except
within a layer close to the two boundaries perpendicular to
the x axis, within which it increases nonlinearly to ensure all
the outgoing energy is absorbed. @, would be treated simi-
larly in the y direction. This type of ABC is also called a
perfectly matched layer.‘“f43 Note that, as expected, Eqgs.
(30) and (31) can be reduced to the second-order wave equa-
tion, Eq. (1), when a=0.

As described earlier, instead of the usual k-space substi-
tution for the Laplacian V> — —k%, we use

V2 — — k% sinc?(cokAt/2). (32)

To solve Egs. (30) and (31) numerically, however, expres-
sions for d/dx and d/dy are required, not V2. As V2
= /x*+*/dy*> and k2=k§+k§, we choose d/dx
=ik, sinc(cokAt/2). In other words,

Ip N .

P Hik, sinc(cokAt/2)p} (33)
and similarly for the gradient in the y direction. To enable
the numerical calculations, the pressure is divided into two
parts, p=p,+p,, and Egs. (30) and (31) are split into four
equations:

u,=-Vplp— au,, (34)
iy == Vplp—ayu,, (35)
pe=—pctduJox+THI2 - ap,, (36)
Py=— pctd uy/dy + T'H/2 = a,p,. (37)

These equations are then discretized using a standard finite-
difference scheme in time and Eq. (33) for the spatial deriva-
tives. When solving for two variables, here the pressure p
and particle velocity u, it can be advantageous to use two
offset (staggered) grids. This model with staggered grids
(and also including bulk absorption due to relaxation pro-
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FIG. 10. Propagation of acoustic waves from a small, circular, photoacoustic source, through a heterogeneous medium with tissue-like properties (see Fig. 9).
The frames are snapshots of the acoustic field at intervals of 0.21 us following the optical pulse. The boundaries between the regions with different acoustic
properties are superimposed, to show how the wave fronts are distorted by the heterogeneities.

cesses) is described in Tabei ef al.*® Such an implementation
was used for the following examples.

Examples using the first-order model. The example
shown in Fig. 7, which was calculated using the second-
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order model of Sec. IV, was recalculated using the first-order
model described above which incorporated an absorbing
boundary condition. In the last few frames in Fig. 7 the prob-
lem of the wave front wrapping around and appearing on the
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far side of the image is evident. Figure 8 shows the pressure
field at times corresponding to the last two frames of Fig. 7,
but calculated by the first-order model. It is clear that the
wrapping problem has been removed.

The final example, shown in Fig. 9, contains a degree of
heterogeneity more representative of tissue. The model can
account for continuously varying acoustic properties, al-
though here the domain is divided into four types of tissue
with different acoustic properties. The sound speeds and den-
sities of the four tissue types were set to: muscle, 1590 m/s
and 1040 kg/mS, fat, 1450 m/s and 900 kg/mS, marrow,
1480 m/s and 1000 kg/m3, and bone, 3200 m/s and
1900 kg/ m3. A small circular PA source, that could for in-
stance represent a blood vessel or a tumor, or a region with
high chromophore concentration for another reason, is
shown in the first frame of Fig. 10. This simple PA source
was chosen so that the effect of the inhomogeneities on the
wave fronts would be readily observable. It would be quite
as straightforward to define a PA source with a complex ge-
ometry. The boundaries between the different tissue types
have been superimposed on the images. The greyscale has
been set the same in each image, which has led to some
thresholding of the wave amplitude in the first few images.
This allows the reflected and refracted waves to be seen more
clearly. The frames are spaced by 0.21 us. The most signifi-
cant change to the circular wave front is, as expected, from
the tissue-bone interface, where there is the greatest acoustic
impedance change. The reflected wave and the reduced am-
plitude of the transmitted wave are visible. The distorting
effect of the differences in the sound speed between the
muscle and fat regions of the tissue can also be seen, for
example, on the left-hand side of the wave.

VI. DISCUSSION

PA sources or distributions of acoustic properties that
contain discontinuities or very large gradients at some points
require high wave numbers in order to describe them accu-
rately. In FFT-based, k-space methods, there is a limit to the
highest permissible wave number, a requirement imposed by
the need to prevent aliasing (when a wave number compo-
nent is undersampled and appears at a lower wave number).
There must be no components higher than the Nyquist wave
number, defined as 0.5(27/Ax), where Ax is the grid spac-
ing. It is therefore important, when using k-space methods, to
spatially smooth the acoustic properties and the spatial part
of the source term in order to ensure there are no components
at wave numbers above this limit. This could be considered
to be a disadvantage to the k-space approach, because
smoothed—and therefore approximate—versions of the
sound speed, density, and source distributions are used when
calculating the acoustic field. However, the high wave num-
ber components, which are removed by smoothing, would
only have contributed to the high frequency part of the field,
and as, in practice, all measurements are bandlimited by the
detectors or ultrasonic absorption to some extent, only those
wave numbers that contribute to the measured field are re-
quired for the model to simulate the acoustic pressure mea-
surements accurately. In other words, when modeling mea-
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surements made by a pressure detector with a finite
bandwidth, it is not necessary to include components of the
field outside this bandwidth. Indeed, to obtain accurate simu-
lations of data measured with a real, nonidealized, detector, a
wave number model of the angle- and frequency-dependent
response of a sensor** can be incorporated into a k-space
model simply by multiplication, and without requiring an
explicit convolution.

When calculating acoustic pressure time histories, it is
important to ensure the time step, At, is sufficiently small to
ensure the sampling rate is greater than the temporal Nyquist
rate (i.e., half the maximum frequency). With k-space models
this requirement is that Az is less than the minimum value of
Ax/c. For the above examples, Ar was 0.2—0.4Ax/c.

All the models described in this paper are for photoa-
coustically generated waves propagating in fluids. In some
circumstances it will be necessary to include the effect of
shear waves on the propagation. k-space models for elastic
wave propagation in solids have also been described,” and
could be applied in these cases.

Vil. SUMMARY

k-space models have been proposed as a straightforward
and computationally efficient approach to modeling the for-
ward problem in biomedical photoacoustics, in particular, to
simulating, accurately, time series measured with a bandlim-
ited detector. k-space models of photoacoustic waves can be
significantly more efficient than corresponding FE and FD
methods, as k-space methods address the particular difficulty
of modeling high-frequency acoustic waves on a large scale
by requiring fewer mesh points per wavelength and allowing
larger time steps without reducing accuracy or introducing
instability. The k-space method of numerical modeling of
photoacoustic waves in fluids is described, and the rationale
behind three particular k-space models (one for homoge-
neous media, one for heterogeneous media, and a model that
can incorporate absorbing boundary conditions) has been ex-
plained. Examples of photoacoustic wave propagation in het-
erogenous, tissue-like, media are given.
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