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Abstract
A method of interrogating a free-space Fabry–Perot sensing
interferometer (FPI) by angle tuning the incident beam in order to vary the
optical pathlength is described. A system based on a PC controlled precision
galvanometer and a 1–1 beam expander that enabled the angle of incidence
to be rapidly and continuously varied without translation is described. This
system was used to demonstrate that the transfer functions (ITF) of low
finesse FPIs of optical thicknesses in the range 80–200 µm could be
accurately recovered by tuning the angle of incidence over less than 9◦. Two
sensor interrogation schemes are described. One involves scanning through
the ITF in constant phase steps by applying an arcosine voltage waveform to
the galvanometer and then returning to the angle at which the ITF phase
derivative is a maximum. The other uses a mirror continuously rotating
through 360◦ to repetitively scan through the ITF in constant angular steps.
The signal is then recovered at the instant in time that the maximum value of
the ITF derivative occurs. It is considered that angle tuning offers a flexible
and inexpensive alternative to interrogating free-space FP sensors by
wavelength tuning.
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1. Introduction

Fabry–Perot (FP) sensing interferometers have been used
to detect a variety of measurands among them strain [1],
temperature [2] and acoustic waves [3–5]. The transduction
mechanism is one in which a time varying external measurand
acts upon the FP cavity to linearly alter its optical
pathlength. This produces an optical phase shift dφ(t)
which, via the intensity-phase transfer function (ITF) IR(φ)

of the interferometer, the characteristic periodic function that
describes the shape of the reflected interference fringes, is
converted to a corresponding reflected intensity modulation. If
dφ(t) is sufficiently small, it can be regarded as acting around
a static phase bias or working point φo as depicted in figure 1.
The FPI reflected intensity output can then be expressed in
terms of the ITF as

IR(φo + dφ(t)) = IR(φo) + I ′
R(φo) dφ(t) (1)

where IR(φo) is the static phase bias term defined by the
laser wavelength and optical pathlength in the absence of a

measurand and I ′
R(φo) dφ(t) is the time varying signal term

that is linearly dependent upon the measurand. I ′
R(φo) is the

phase derivative of the transfer function at φo and represents the
sensitivity of the sensor to a measurand-induced phase shift—it
is termed the phase sensitivity.

A difficulty is that the transfer function is inherently
nonlinear (e.g. a raised cosine for a low finesse FPI as shown in
figure 1). The phase sensitivity and hence the signal term are
therefore dependent upon φo which may vary due to changes
in cavity optical thickness and laser wavelength.

The situation is illustrated in figure 2. Figure 2(a) shows
the reflected interference fringe distribution from a free-space
40 µm thick polymer film FP interferometer. This was
obtained by scanning a normally incident, focused He–Ne laser
beam over the FPI surface, detecting the reflected intensity
(the phase bias term in equation (1)) using a photodiode
and recording its dc voltage output Vdc for each point of
the scan [6]. The variations in intensity in figure 2(a) are
due to phase bias variations arising from changes in optical
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Figure 1. Operation of a low finesse FP sensing interferometer.

thickness across the polymer film. Simultaneously, to create
a signal term, the output of a pulsed 3.5 MHz PZT ultrasound
transducer (coupled via a water layer) was directed on to the
FPI thereby modulating its optical thickness and producing
a small (<150 mrad) time varying phase shift dφ(t). The
photodiode output dvac due to the resulting reflected intensity
modulation (the signal term in equation (1)) was high pass
filtered to separate it from Vdc and its amplitude plotted a
function of position as shown in figure 2(b). Assuming that the
acoustically-induced phase shift was constant, figure 2(b) can
be regarded as a relative phase sensitivity map. This shows two
curved contours of uniform sensitivity surrounded by largely
insensitive regions. An obvious difficulty exists if it is required
to address points on the sensor outside these contours, perhaps
in order to map the spatial distribution of a measurand or, if
making a measurement at a single point, the contours shift
due to environmentally induced changes in FP cavity optical
thickness or laser wavelength.

In order to control the position of the sensitivity contours
and interrogate any point on the sensor, some method of
remotely and continuously adjusting the phase bias over at
least 2π radians is required. This could be achieved by tuning
the laser wavelength over the free spectral range of the FP
sensing cavity. Visible and NIR edge emitting laser diodes
can be continuously wavelength tuned by modulating the
injection current. However, their low current tuning coefficient
(<0.01 nm mA−1) limits their tuning range to approximately
0.5 nm and therefore the minimum FP cavity length (∼0.5 mm)

that can be addressed. Temperature tuning can provide a
greater tuning range (typically several nanometres) but is
slow. External cavity laser systems can provide the necessary
continuous tuning range (>10 nm) to interrogate short cavity
lengths, down to a few tens of microns [2], but are expensive.
Limited output power (<20 mW) of external cavity laser
systems can also present a limitation for certain applications—
for example those that require illuminating a large area of
the FPI with high intensity in order to map the 2D spatial
distribution of a measurand [5, 9, 10].

In this paper, we describe an alternative method of
remotely and continuously controlling the phase bias of
free-space FPIs by tuning the angle of incidence of the
illuminating beam. This approach has several advantages
over wavelength tuning. Firstly, relatively large phase shifts
can readily be produced by angle tuning, enabling short FPI
cavity thicknesses (∼50 µm) to be interrogated. Secondly,

by not requiring a tunable laser, the source requirements are
substantially relaxed, enabling almost any fixed wavelength
laser source of sufficient coherence to be employed. So, for
applications where cost is an issue, inexpensive He–Ne lasers
or laser diodes can be used. For applications that require
illuminating with high intensity, readily available high power
laser diodes can be employed.

The use of an automatic angle-tuned phase bias control
system to set the operating point of a FP polymer film
ultrasound imaging sensor has been described in brief in [9].
A simple manually controlled method of angle tuning has also
been used to optimize the sensitivity of a dielectric coated
acoustic sensor for making point measurements [7]. In this
paper, a more detailed description of the theory, practical
implementation and experimental validation of angle tuning
for FPI sensing is provided. In section 2 the relationship
between incident angle and phase is described. Sections 3
and 4 describe the details of a practical angle-tuned phase
bias control system and its experimental evaluation using low
finesse reference FPIs. Section 5 discusses two practical sensor
interrogation approaches.

2. Phase–angle relationship

The relationship between the phase φ and the angle θ of the
incident light is established by considering the geometry of a
plane parallel FP cavity illuminated by a collimated beam as
illustrated in figure 3. Consider the two parallel rays p and
q incident at angle θ . p is transmitted into the cavity and
reflected from the rear mirror arriving at C. Here it superposes
and interferes with the reflection of q from the front mirror.
The resulting optical phase shift φ between the two reflections
is given by

φ(θ) = 2π

λ
(OPD) (2)

where OPD is the difference in optical path lengths from points
of equal phase, A and D on the two rays p and q respectively,
to point C where they interfere:

OPD = n2ABC − n1DC (3)

where n2 and n1 are the refractive indices of the internal and
external cavity media respectively. By simple geometry,

OPD = n2

(
2l

cos θ ′

)
− 2ln1 tan θ ′ sin θ (4)

where θ ′ is the internal cavity angle and l the separation of
the reflecting surfaces. Using n1 sin θ = n2 sin θ ′ to obtain an
expression for the OPD in terms of the internal angle θ ′ gives

OPD = 2n2l cos θ ′. (5)

The phase shift in terms of θ ′ is then obtained by
inserting equation (5) into (2) and, assuming the small angle
approximation (θ ′ = n1θ/n2), can be written

φ(θ) = 4πn2l

λ
cos

(
n1

n2
θ

)
. (6)

So, for example, a 100 µm thick FPI of refractive index
n2 = 1.5 in air and illuminated with 633 nm laser light, initially
at normal incidence, would require a modest change in the
angle of incidence of the illuminating beam of 5.6◦ to produce
a 2π phase shift.
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Figure 2. (a) Reflected dc intensity distribution from a 40 µm Fabry–Perot polymer film sensing interferometer (FPI) and (b) corresponding
relative phase sensitivity map. (c) Horizontal profiles through (a) and (b) showing the minima of |dvac| coinciding with the maxima and
mimina of Vdc. The FPI was fabricated by vacuum depositing a 40 µm thick Parylene C polymer layer on to a semi-reflective aluminium
coated glass substrate followed by a deposition of a highly reflective aluminium coating on to the polymer film [6]. The absorption in the
aluminium coatings account for the asymmetric shape of the fringes [8] in (a).

Figure 3. Ray construction for a plane parallel FP interferometer
illuminated by a collimated beam of incidence angle θ .

3. Implementation—optical system

In order to vary φ by adjusting θ , an optical system that
allows a collimated beam to be pivoted about its point of
incidence on the FPI is required. Such a system is shown
in figure 4. It employs a 1–1 beam expander arrangement
comprising lenses L1 and L2 with a precision galvanometer
mirror under PC control situated in the rear focal plane of L1.
The FPI is positioned in the front focal plane (P1) of L2 and
the reflected output beam equivalently reversed through the
system by directing it through L3 and on to a photodiode of
aperture 0.4 mm situated in focal plane (P2) of L3. All three
lenses have the same focal length and diameter of 59 and 25 mm
respectively. Changing the angle θin of the input beam using the
galvanometer mirror produces a corresponding change in the
angle θ of the light incident on the FP sensor without translating
it across the surface. The light reflected from the sensor is

directed on to the photodiode, also without translation, as θin is
varied thus preserving the spatial correspondence between the
sensor interrogation point in the plane P1 and its corresponding
optical detection point at P2. By adjusting θin, and hence
the optical pathlength of the interferometer, the contours of
uniform sensitivity such as those shown in figure 2(b) can be
scanned across the illuminated region of the sensor enabling
any part of it to be interrogated with optimum sensitivity.

4. System evaluation

It is assumed that a change in the system input angle θin

produces an identical change in θ and therefore a phase
shift in accordance with equation (6). It is important to
establish the validity of this assumption as in certain sensor
interrogation schemes, such as that described in section 5.1,
accurate recovery of the ITF is required to optimally set the
working point of the FPI. Such schemes will be compromised
if the ITF is distorted due to nondeterministic angle dependent
changes in the relationship between phase and angle. This
could be due to angular distortion in the optical system due, for
example, to aberrations introduced by the lenses L1–3 such that
θ �= θin. Additionally, the ITF can become distorted if any of
the optical components of the system possess significant angle
dependent transmission characteristics due, e.g., to surface
imperfections or anti-reflection coatings.

To investigate the significance of these effects and the
validity of equation (6), comparisons were made between the
measured and theoretical angle tuned ITFs of low finesse FPIs.

A glass cover slip of nominal thickness 150 µm
was used as the FPI and positioned at P1 in figure 4.
The Fresnel reflections (∼4%) due to the refractive index
mismatches at the glass/air interfaces formed the mirrors of
the interferometer. The mirror reflectivities are sufficiently
low that the contribution of multiple intracavity reflections
can be neglected and the system can be regarded as one of

2000



Interrogation of free-space Fabry–Perot sensing interferometers by angle tuning

Figure 4. PC controlled angle tuning system. The galvanometer mirror is rotated to produce input angle θin resulting in a corresponding
change in the output angle θ of the beam at P1 without translation. The reflected beam from the FPI is equivalently reversed through L3 so
that there is also no translation of the beam at P2. The focal length f of lenses L1–3 is 59 mm.

Figure 5. (a) Galvanometer mirror rotated in constant angular steps according to equation (8) producing the FPI output shown in (b).
(c) Mirror rotated according to the arcosine angle function of equation (9) and resulting in the FPI output sampled in steps of constant
phase shown in (d). The continuous curve in (d) is a cosine function fitted to the data. The FPI was a low finesse glass (n2 = 1.5) cover slip
of nominal thickness 150 µm.

low finesse. The single pass transfer function is therefore the
familiar raised cosine function of a two beam interferometer
and can be written as

IR(φ) = A + B cos φ(θ) (7)

where A and B are functions of the incident intensity and cavity
mirror reflection coefficients and φ(θ) is given by equation (6).

A linearly increasing voltage function generated by the
PC was applied to the galvanometer mirror, thus rotating the
optical beam in constant angular steps from normal incidence
to a maximum angle θm = 11.2◦ according to

θ = θm
i

imax
(8)

where i = 0, 1, 2, 3, . . . , imax and represents the index of
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Figure 6. ITFs obtained using 50 and 125 µm thick low finesse
PET (n2 = 1.65) FPIs. The dotted curves represent the measured
data. The continuous curves are cosine functions fitted to the data.

the array containing the voltage values that are sequentially
applied to the mirror. This is shown in figure 5(a) along with
the corresponding FPI output (represented by the photodiode
voltage output Vdc) as a function of i in figure 5(b): the time
taken to rotate the mirror and acquire this data was 0.5 s.
The maxima and minima of the reflected fringes are clearly
apparent in figure 5(b). However, they are not the equally
spaced cosinusoidal fringes characteristic of a low finesse FPI
due to the cosine angular dependence of the phase as defined
by equation (6). As θ increases, the phase shift increases more
rapidly causing the fringes to become increasingly bunched
up.

To obtain the ‘true’ cosinusoidal ITF, the x-axis in
figure 5(b) could be converted to a linear phase scale using
equation (6). However, because IR has been obtained in
constant angular steps, the phase intervals at which the ITF
is sampled would become progressively larger with increasing
angle thus reducing the accuracy of the recovered ITF. It is
more desirable to obtain IR directly in steps of constant phase
by applying an increasing arcosine voltage function to the
galvanometer mirror of the form

θ = n2

n1
cos−1

(
1 − i

imax

(
1 − cos

n1

n2
θm

))
. (9)

This is shown in figure 5(c) along with the resulting transfer
function in figure 5(d). The characteristic cosinusoidal shape
of the ITF is now clearly apparent as confirmed by a cosine
function fitted to the data—a good fit (R2 = 0.96, where R2

is the coefficient of determination) up to i = 450 (θ = 9◦)
is obtained. Inserting λ = 633 nm, n1 = 1, n2 = 1.5
and θm = 11.2◦ into the phase term of the fitted cosine
function and solving for l gives a value of l = 162 µm.
Although reasonably close to the nominal cover slip thickness
of 150 µm, it is difficult to assess the accuracy of the
measurement on account of the manufacturer’s large thickness
tolerance. Further experimental data were therefore obtained
using more tightly specified (±10% of the nominal thickness)
PET (polyethylene terepthalate) films as FPIs. ITFs measured
using 50 and 125 µm thick PET films (n2 = 1.65) and their
cosine fits are shown in figure 6: R2 = 0.99 for the fit to the
50 µm PET film data and R2 = 0.98 for the fit to the 125 µm
PET film data. The values of l recovered from the fitted data
are 56 and 124 µm, in good agreement with the known values.
The closeness of the cosine fits to the experimental data in

figures 5(d) and 6 and agreement of the recovered values of
l with the known values of the PET FPIs indicates that, for
θ < 9◦, θ = θin and equation (6) is valid.

For θ > 9◦ (i > 450), discrepancies between the cosine
fit and the experimental data are apparent in figure 5(d). This is
most likely to be due to off-axis aberrations introduced by the
lenses L1–3. The effect of such aberrations, particularly coma,
is that a change in θin no longer results in an identical change in
θ and the phase–angle relationship described by equation (6)
is no longer directly applicable. At small angles the effect is
negligible. At larger angles, as the beam moves further off-
axis, the aberrations become more significant producing the
distortion observed in the transfer function. Additionally, such
aberrations will have the undesirable effect of translating the
FPI input and output beams at P1 and P2 and thus adversely
affecting the lateral spatial fidelity of the measurement. To
minimize the deleterious effects of aberrations, it was found
necessary to use achromatic doublets for L1–3.

The other potential source of ITF distortion is
angle dependent transmission characteristics in the optical
components of the system. However, the near-uniform
amplitude of the fringes in figure 5 suggests this is negligible.

Two factors have not been accounted for. Firstly, the
lateral beam walk-off that occurs as the angle of incidence
increases. In principle this will reduce fringe visibility and the
lateral spatial resolution of the measurement. However, for
low finesse interferometers of less than a few hundred micron
thickness, beam diameters greater than a few hundred microns
and small angles (θ < 10◦), it can be neglected—it will be of
greater significance for high finesse FPIs. Secondly, the area of
the beam increases as 1/ cos θ reducing the incident intensity
and altering the geometry of the interrogated region. Again
this is a marginal effect for small angles (θ < 10◦).

5. Sensor interrogation schemes

Two sensor interrogation methods have been investigated. The
first (section 5.1) involves actively setting the phase bias of the
FPI at its optimum point by scanning through the ITF and
returning to the angle that corresponds to the peak value of
the ITF phase derivative. The second (section 5.2) relies upon
repetitively scanning through the ITF and capturing the signal
as it naturally coincides in time with the peak value of the ITF
phase derivative.

5.1. Active phase bias control

This method involves rotating the galvanometer mirror using
the arcosine voltage function described by equation (9) and
measuring the dc output of the photodiode Vdc to obtain the
ITF in steps of constant phase as described in section 4. The
derivative of the ITF is then calculated and the mirror returned
to the angle that corresponds to the peak phase derivative, the
point of maximum phase sensitivity. The system is then ready
to make a measurement.

An automated control system based on this method was
implemented in Labview (National Instruments). A typical
system output obtained using a 40 µm thick FPI is shown in
figure 7. This shows the ITF, Vdc, the corresponding derivative
dVdc/di and the optimal phase bias point φo located by the
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Figure 7. Output of active phase bias control system. The FPI is a
40 µm thick low finesse polymer film (n2 = 1.65) FPI. The system
rotates the mirror according to the arcosine function of equation (9)
to obtain the ITF (represented by Vdc). The derivative dVdc/di is
computed and the mirror returned to the angle that corresponds to
the peak value of dVdc/di—the point of maximum sensitivity,
indicated by the vertical line at i = 48.

Figure 8. Simulation of phase bias term and signal term using a
continuously rotating mirror to interrogate a low finesse FPI and
applying a measurand varying sinusiodally at ω2.

system. dVdc/di provides a measure of the phase sensitivity.
It can therefore be used to monitor variations in sensitivity.
For example, if measurements at different points over an FP
sensor are being made, sensitivity variations due to changes in
intensity across the incident illuminating beam or variations
in the FPI mirror reflectivities can be compensated for by
dividing by the value of dVdc/di obtained at φo—this also
corrects for changes in the sign of the measurement should
the system switch from locking on to a positive to a negative
slope. This approach has successfully been used for mapping
photoacoustic signals incident on a FP polymer film sensor [9].

5.2. Continuous phase bias scanning

An alternative to the ‘search and locate’ approach described
above is to slowly and continuously modulate the phase bias
over 2π radians and capture the signal at the instant in time
it naturally coincides with the peak value of the ITF phase
derivative. The advantage of this method is that it can be
inexpensively implemented by replacing the PC controlled
precision galvanometer in figure 4 with a mirror mounted on a
dc motor that is continuously rotating through 360◦ . Assuming

the mirror is rotating at constant angular frequency ω1, the
angle θin swept out across input lens L1 in figure 4 is a linear
function in time t , thus

θin = 2ω1t. (10)

Assume also a sinusoidally varying measurand that modulates
the cavity thickness about its mean value lo with amplitude dl
at angular frequency ω2. Thus the cavity thickness l becomes

l = lo + dl cos ω2t. (11)

Equations (10) (assuming θ = θin) and (11) are substituted into
equation (6), to obtain the phase term. Assuming a low finesse
FPI, equation (7) can then be used to write the time-dependent
FPI output during the period the beam is sweeping across the
input lens L1 as

IR(t) = A + B cos

[
4πn

λ
(lo + dl cos ω2t) cos 2ω1t

]
. (12)

Expanding the phase term in (12) and assuming the rate
at which the phase bias is scanned is much less than the
measurand signal frequency, 2ω1 � ω2, gives

IR(t) = A + B cos

(
4πn

λ
lo cos 2ω1t

︸ ︷︷ ︸
φo(ω1)

+

4πn

λ
dl cos ω2t

)
︸ ︷︷ ︸

dφ(ω2)

.

(13)
Thus the phase term consists of two sinusoidally varying
components. The first, φo(ω1) is due to the rotation of
the mirror at 2ω1 and represents the slowly varying phase
bias. The second is the signal term dφ(ω2) at ω2 and is
due to the measurand induced thickness change. Making the
substitutions for φo(ω1) and dφ(ω2)

IR(t) = A + B cos(φo(ω1) + dφ(ω2)). (14)

Expanding equation (14) and assuming dφ(ω2) is small so that
sin dφ = dφ and cos dφ = 1 we get

IR(t) = A + B cos φo(ω1)︸ ︷︷ ︸
phase bias term

− B sin φo(ω1)dφ(ω2)︸ ︷︷ ︸
signal term

. (15)

Thus the FPI intensity output can be separated into (i) a slowly
varying phase bias term due to the angular variation at ω1 and
(ii) a signal term at ω2 that is amplitude modulated by the
phase bias variation as illustrated in figure 8. Equation (15)
is recognizable as equation (1) with the low finesse ITF
substituted for IR(φo) and can be written more generally in
terms of an arbitrary ITF and measurand-induced phase shift
dφ(t)

IR(t) = IR(φo(ω1)) + I ′
R(φo(ω1)) dφ(t). (16)

To demonstrate the concept, the 40 µm polymer film FPI
used to obtain the data in figure 2 was positioned at P1 in
figure 4. A mirror mounted on a dc motor, mounted in
the back focal plane of L1 (in place of the galvanometer
mirror) was used to angularly scan the beam over the aperture
of the input lens L1. To create a repetitive signal term,
short ultrasonic pulses at a repetition frequency of 10 kHz
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Figure 9. Output of a 40 µm polymer film FPI obtained by varying
θ using a continuously rotating mirror (angular frequency
ω1 = 9 rad s−1) and applying ultrasonic pulses at a repetition
frequency of 10 kHz (ω2 = 6.28 × 104 rad s−1), Vdc represents the
slowly varying phase bias term due to the rotation of the mirror. dvac

represents the acoustically-induced signal term.

(ω2 = 6.28×104 rad s−1), rather than a continuous sinusoidal
variation, were used to modulate the optical thickness of
the FPI. The angular frequency of the motor was 9 rad s−1

(1.43 Hz) and thus fulfilled the requirement that 2ω1 � ω2.
The output of the photodiode was connected to a 500 MHz
DSO. This was triggered by a second photodiode positioned
to detect the beam just prior to it sweeping across the aperture of
lens L1. As the beam is slowly scanned over the lens aperture
at a rate much less than the signal pulse repetition rate, the
signal is captured at multiple points over the transfer function.
By appropriate filtering, the time records of the phase bias
Vdc and signal term dvac were recovered separately and are
displayed in figure 9. This shows similar behaviour to that
depicted in figure 8 with the signal minima coinciding with
turning points of the phase bias component. Note that unlike
figure 8 however, the signal amplitude dvac is lower when the
slope of Vdc is positive compared to when it is negative. This is
due to asymmetry in the intensity-phase ITF due to absorption
in the aluminium coatings used to fabricate the mirrors of this
particular FPI [8]: an indication of this asymmetry can be seen
in the reflected interference fringes in figure 2(a) which were
obtained using the same FPI. The derivative of the ITF and
hence the phase sensitivity, and thus the signal amplitude, are
therefore dependent upon the sign of the slope for this FPI.
By contrast, an uncoated low finesse FPI is assumed for the
simulation shown in figure 8. This has a cosinusoidal, and
therefore symmetric, intensity-phase ITF and thus the signal
amplitude is independent of the sign of the ITF slope.

One approach to recovering the signal is simply to convert
the horizontal axis in figure 9, which is currently scaled in steps
of constant angle, to a linear phase scale using equation (6).
Subject to the sampling limitations discussed in section 4, this
will provide the ITF. The peak value of the ITF derivative could
then be calculated, and the acoustic signal corresponding to this
point extracted from the time record of dvac.

If only the signal amplitude is required (rather than the
temporal characteristics of the signal), a simpler approach
can be adopted. That is to record only the signal dvac

over the duration the beam is being swept across input lens
L1 and then apply a peak detect algorithm to the captured

time record of dvac in order to extract the maximum signal
amplitude. This will automatically recover the amplitude of
the signal coinciding with the point of maximum sensitivity.
The advantage is that it is not necessary to attempt to recover
the ITF shape, or indeed even record it. Distortion in the ITF,
due to lens aberrations for example, are of little consequence.
Providing 2ω1 � ω2, the amplitude of the signal that coincides
with the point of maximum phase sensitivity on the ITF will
always be obtained. This approach has successfully been used
to obtain 2D amplitude maps of ultrasound fields [10].

Assuming the 2ω1 � ω2 requirement can be fulfilled, the
principal advantage of the continuous scanning approach is
that, by using a simple dc motor to vary θ , the expense of a
precision galvanometer mirror and the closed loop PC control
system is eliminated.

6. Conclusions

A practical and flexible method of interrogating free-space FP
sensing interferometers by angle tuning has been described.
This has shown that the ITF of low finesse FPI cavities of
optical thicknesses down to 80 µm can be accurately recovered
by tuning the external angle of incidence over less than 9◦.
Subject to the limitations imposed by off-axis lens aberrations
discussed in section 4, higher numerical aperture lenses could
be used to increase the angular excursion in order to interrogate
shorter cavity thicknesses. Given the availability of high
quality lenses of NA = 0.4, it should be possible to interrogate
cavities down to approximately 10 µm in thickness. For large
cavity thicknesses (>500 µm), where only a small angular
excursion is required to obtain a 2π phase shift, the degradation
in fringe visibility due to beam walk off rather than the effects
of lens aberrations is likely to be the limiting factor.

There are several advantages of angle tuning over other
methods of interrogating FP sensors. By dispensing with
the need for a wavelength tunable source almost any fixed
wavelength source of sufficient coherence can be used. Low
cost He–Ne lasers or laser diodes can therefore be used. For
mapping applications, high power sources can be used to
illuminate a large area of the FPI with high intensity. Since
angle tuning enables the phase bias to be varied continuously
and rapidly using high speed resonant galvanometers (kHz) or
electro-optic scanners (MHz) a variety of alternative signal
processing methods can be used. For example, the phase
could be modulated over 2π radians at a frequency several
times higher than the highest signal frequency. The FPI
output therefore becomes a high frequency carrier modulated
in phase by the measurand [11] and recoverable using standard
FM demodulation methods. Since the measurement is based
on fringe shifts, it is independent, for example, of laser
power fluctuations providing an inherently robust processing
approach. Other robust processing methods that could be
applied include a variety of phase stepping algorithms [12, 13]
which could be implemented by illuminating sequentially or
simultaneously at a range of discrete angles.
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