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Abstract
Quantitative photoacoustic tomography (QPAT) offers the possibility of high-
resolution molecular imaging by quantifying molecular concentrations in
biological tissue. QPAT comprises two inverse problems: (1) the construction
of a photoacoustic image from surface measurements of photoacoustic wave
pulses over time, and (2) the determination of the optical properties of the
imaged region. The first is a well-studied area for which a number of solution
methods are available, while the second is, in general, a nonlinear, ill-posed
inverse problem. Model-based inversion techniques to solve (2) are usually
based on the diffusion approximation to the radiative transfer equation (RTE)
and typically assume the acoustic inversion step has been solved exactly.
Here, neither simplification is made: the full RTE is used to model the
light propagation, and the acoustic propagation and image reconstruction are
included in the simulations of measured data. Since Hessian- and Jacobian-
based minimizations are computationally expensive for the large data sets
typically encountered in QPAT, gradient-based minimization schemes provide
a practical alternative. The acoustic pressure time series were simulated using a
k-space, pseudo-spectral time domain model, and a time-reversal reconstruction
algorithm was used to form a set of photoacoustic images corresponding to four
illumination positions. A regularized, adjoint-assisted gradient inversion using
a finite element model of the RTE was then used to determine the optical
absorption and scattering coefficients.

(Some figures may appear in colour only in the online journal)
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1. Introduction

Photoacoustic tomography (PAT) uses laser-generated ultrasound to produce high-contrast,
high-resolution images of biological tissue in vivo [17, 19, 21, 29, 34]. PAT images represent
the initial distribution of acoustic pressure generated from the absorption of short (ns) pulses of
laser light, delivered to a region of soft tissue. When light is absorbed by chromophores within
the tissue, there quickly follows a small, localized increase in temperature and pressure which,
due to the elasticity of soft tissue, results in the propagation of acoustic waves that are detected
by an ultrasound transducer array placed at the tissue surface [30]. Temporal measurements of
these photoacoustic waves and knowledge of the speed of sound in biological tissue enable the
reconstruction of the initial pressure distribution following the absorption of the light pulse.

Quantitative photoacoustic tomography (QPAT) comprises two separable inverse
problems: the first involves the reconstruction of the distribution of initial pressure from
time-series measurements of the propagated acoustic wave pulses, and is a well-studied
area for which a number of solution techniques are available [18]. This work is mostly
concerned with the second inverse problem of QPAT, often referred to as the optical
inverse problem, which aims to determine the chromophore concentration distributions
from a reconstructed PAT image. Since the contrast in a PAT image is provided by the
absorption of light within the tissue, PAT images are dependent on the concentrations of
chromophores present within the tissue region. The absorption-based contrast also means that
PAT images may be selectively enhanced by tuning the excitation wavelength to a known
peak in the absorption spectra of a particular chromophore. This means that a technique to
determine quantitatively accurate spatial maps of specific chromophore concentrations could
be combined with a spectroscopic approach to obtain quantitative estimates of important
physiological parameters, e.g. blood oxygen saturation. Moreover, the ability to quantify
the concentrations of externally administered contrast agents would enable photoacoustic
molecular imaging. Since chromophore concentrations are linearly related to the optical
absorption coefficient, an equivalent solution to the problem is to develop a method to
determine the absorption coefficient from a measured PAT image. However, whether recovering
chromophore concentrations or optical absorption, the optical inverse problem of QPAT is, in
general, a nonlinear, ill-posed, large-scale inverse problem.

Several inversion methods have been proposed for QPAT. These typically assume that
the propagation of light throughout the tissue is near-isotropic, and so can be modelled using
the diffusion approximation (DA) to the radiative transfer equation (RTE). However, light
propagation in biological tissue is highly anisotropic in regions close to light sources, and
does not behave diffusely until it has travelled a few transport mean free paths. The DA does
not therefore hold in regions of great interest in QPAT, e.g. close to the tissue surface. For
this reason we have used the full RTE to model light transport within the tissue. The acoustic
propagation and image reconstruction were also included in the simulation of PAT images, so
that the inversion technique tackles both the acoustic and optical inverse problems, as would
be required in practice.

In this paper we present a model-based inversion technique which utilizes a transport-
based light model and a quasi-Newton minimization scheme. Minimization schemes iteratively
reduce the difference between a measured and modelled image, and often use curvature
information provided by the Hessian matrix of second derivatives, or an approximation to it,
to direct this minimization. Since PAT images are three dimensional and high resolution, the
data sets involved can be very large. The calculation, inversion and even the storage of a full
Hessian matrix may therefore be unfeasible, and in this case even Jacobian-based methods,
which approximate the full Hessian using the Jacobian matrix of first derivatives, can become
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impractical. Quasi-Newton methods require only gradient information to approximate the
Hessian matrix and are therefore memory-efficient even for large data sets, making them a
practical alternative for the full QPAT inversion.

The structure of the paper is as follows. Section 2 describes the formulation of
the photoacoustic model used to simulate PAT images and perform the quasi-Newton
minimization. In section 3 we motivate the choice of light transport model and minimization
algorithm used in the presented method, and include a brief discussion on existing
minimization-based methods for QPAT. The presented adjoint-assisted, gradient-based method
is detailed in section 4, and the results of the method using two-dimensional, simulated PAT
images are presented and discussed in section 5.

2. Formulation of the problem

In PAT, a spatially dependent ultrasound signal is generated by illuminating an optically
absorbing and scattering medium with short pulses of visible or near-infrared light. As the
time-scale for the acoustic wave propagation is typically around three orders of magnitude
longer than the optical illumination and absorption, the optical and acoustic inverse problems
may be decoupled and tackled separately [6].

In practice, a PAT image is reconstructed from temporal surface measurements of
propagated photoacoustic waves. By modelling the physical processes involved in the
generation of a photoacoustic signal and performing the image reconstruction, PAT images
can be simulated and used in a model-based inversion scheme. Consider a tissue region of
interest � ∈ R

n with n = 2, 3. Light propagation in a turbid medium such as biological tissue
is characterized by its absorption and scattering properties, namely the absorption coefficient
μa(r) and scattering coefficient μs(r). These represent the probability per unit length of an
absorption and scattering event, respectively, at a point r ∈ �. Light transport in biological
tissue may be modelled analytically using the RTE, an integro-differential equation which
represents the conservation of energy in a particular control volume. The RTE (given below in
equation (1)) states that, as light travels throughout a region in a particular direction, energy
can be lost through the absorption of a photon, the scattering of a photon out of the direction of
interest or the net outflow of the region due to the gradient, and can be gained via the scattering
of a photon into the direction of interest or from any light sources in the medium. Since the
optical propagation and absorption can be treated as instantaneous on an acoustic timescale,
the quantity of interest is the time-integrated radiance φ(r, ŝ), which represents the energy per
unit area at a point r ∈ � and in a direction of interest ŝ ∈ Sn−1. φ(r, ŝ) is the solution of the
time-integrated RTE, which takes the form

(ŝ · ∇ + μa(r) + μs(r))φ(r, ŝ) − μs

∫
Sn−1

�(ŝ, ŝ′)φ(ŝ′) dŝ′ = q(r, ŝ), (1)

where q is a light source and �(ŝ, ŝ′) is the scattering phase function, a probability density
function which describes the probability that a photon travelling in a direction ŝ will be
scattered into a direction ŝ′. Here, � is represented by the Henyey–Greenstein phase function
[15], a commonly used phase function for biological tissue [5] which is characterized by the
mean cosine of the angle between the incident and scattered light, usually called the anisotropy
factor and denoted g. It is assumed that no photons travel in an inward direction at the boundary
∂� except at the source position rs ⊂ ∂�, which gives the boundary condition

φ(r, ŝ) =
{
φ0(r, ŝ), r ∈ ∪rs, ŝ · n̂ < 0
0, r ∈ ∂� \ ∪rs, ŝ · n̂ < 0,

(2)
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where φ0 is the boundary source and n̂ is a unit vector normal to ∂�. Since the radiance φ(r, ŝ)
is the energy per unit area at a point r in a direction ŝ, the total energy at position r, often called
the fluence and denoted here by �(r), is equal to its integral over all directions:

�(r) =
∫

Sn−1
φ(r, ŝ) dŝ. (3)

The amount of optical energy absorbed per unit volume in �, denoted by h(r), is then

h(r) = μa(r)�(r). (4)

Thermodynamic considerations enable the initial pressure p0 arising from this optical
absorption to be written as

p0(r) = �(r)h(r), (5)

where � is the photoacoustic efficiency, sometimes equated to the Grüneisen parameter, a
dimensionless, tissue-specific property representing the conversion efficiency of heat energy
to pressure, which we will assume is known throughout the tissue. When the sound speed
and density are uniform and the optical excitation is regarded as instantaneous, the acoustic
propagation may be described by an initial value problem for the homogenous wave equation(

∂2

∂t2
− c2

s ∇2

)
p = 0, (6)

whose initial conditions are given by

p(r, t)|t=0 = p0(r),
∂ p

∂t

∣∣∣∣
t=0

= 0, (7)

where cs is the sound speed and p(r, t) represents the acoustic pressure at a point r ∈ �

and time t [11]. The initial pressure distribution p0(r), which constitutes the PAT image, is
reconstructed from measurements of the acoustic pressure over some arbitrary measurement
surface. Numerous image reconstruction algorithms for reconstructing the initial pressure
distribution exist [18]; here, (6) was solved using a k-space, pseudo-spectral time domain model
and a time-reversal reconstruction algorithm was used to simulate a ‘measured’ photoacoustic
image pm

0 [27, 28]. As � is known throughout the domain it is straightforward to obtain a
measured absorbed energy map

hm(r) = pm
0 (r)

�(r)
, (8)

from which the chromophore concentration distributions are to be recovered. Since
chromophore concentrations are linearly related to the optical absorption coefficient via the
chromophores’ molar absorption coefficients, they can be obtained straightforwardly from μa

provided that all contributing chromophore types are known. We therefore seek to determine
a quantitatively accurate estimate of μa from the measured absorbed energy map hm.

2.1. Challenges

The propagation of light in turbid media is strongly characterized by the wavelength-dependent
optical absorption and scattering, so that (4) can be written as

h(r, λ) = μa(r, λ)�(r, λ;μa(r, λ), μs(r, λ)), (9)

where we have noted explicitly any dependence on the optical wavelength λ. Since � and μa

vary both spatially and with wavelength, the resulting image suffers from both structural and
spectral distortion. Furthermore, the dependence of � on μa means that h (and hence p0) is
nonlinearly related to the absorption coefficient, making it much harder to recover without an
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estimate of the fluence. The spectral distortion means that the light is coloured as it passes
through the medium, and the spectrum of the absorbed energy at any point may be dependent
on a combination of the spectra of the absorbing components at other points in the illuminated
region. Moreover, the diffuse nature of light propagation in a turbid medium such as biological
tissue means that information is quickly lost as it travels further away from the source.

The dependence on both optical absorption and scattering, and the fact that neither are
likely to be known or easily measured, means that it will be necessary to recover quantitative
estimates of both coefficients simultaneously. However, recovering these two parameters from
a single PAT image may not have a unique solution, since two different sets of absorption
and scattering coefficients may give rise to the same absorbed energy image. It is therefore
necessary to include a sufficient amount of additional information to avoid this nonuniqueness.
This has been highlighted recently in [2, 3, 7, 33], where it has been demonstrated that a set
of PAT images obtained using multiple illumination positions can ensure a unique solution.
The spectral dependence of a PAT image can also be exploited; in this case, a set of PAT
images obtained using multiple wavelengths are used to avoid the nonuniqueness [2, 9, 22].
In this work we have used a multiple-illumination approach, which does not require the prior
knowledge of the wavelength-dependence of the scattering coefficient needed when using a
multiple-wavelength approach.

A further, more practical challenge when dealing with this inversion is the large-scale
nature of the problem. PAT images are three dimensional and high resolution, and hence
contain a significantly large amount of data. Any inversion technique must therefore be able
to perform successfully with images of this size in order to provide a practical method of
recovering chromophore concentrations from real PAT images. A discussion of the effect of
the size and resolution of PAT images on minimization-based techniques can be found in
section 3.2.

Though memory-efficient methods have been successfully used for QPAT [2, 11, 13, 14],
existing methods typically use the DA to the RTE to model the light distribution. The DA
assumes that the probability of an absorption event is much smaller than that of a scattering
event (μa � μ′

s), and that the light is near-isotropic throughout the whole domain. It is
therefore only valid in regions more than a few transport mean free paths away from a light
source, where the light has undergone multiple scattering events and has therefore lost its
directionality and become diffuse [1]. In PAT, however, regions close to the light source
and domain boundaries can constitute a significant portion of the image and often contain
information of great interest. The DA therefore breaks down in regions of interest to PAT, and
so does not provide a suitably accurate model.

3. Minimization-based approaches in QPAT

Early attempts at developing optical inversion techniques have simplified the problem by
assuming μs is known, in which case a number of methods can be used to recover μa

[4, 10, 12, 31, 32]. However, since this assumption is unlikely to be true in most cases, it is
desirable to develop a more general method. In this case, error minimization approaches have
been proposed [2, 7, 8, 13, 14, 22, 26], whereby the sum of squared differences between the
measured absorbed optical energy hm and the modelled absorbed optical energy h(μa, μs) is
minimized with respect to the optical coefficients. This nonlinear least-squares formulation
therefore seeks to find (μa, μs) which minimizes the error functional

E = 1

2

∫
�

(hm(r) − h(r;μa, μs))
2 dr. (10)
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This type of error minimization scheme is effective at dealing with the nonlinearity of the
problem, as it aims to iteratively adjust (μa, μs) until the difference between the measured
and modelled data is satisfactorily reduced. The update to (μa, μs) can be calculated using
the inverse of the Hessian matrix of second partial derivatives, however, since calculating
and inverting this large, dense matrix is a costly procedure, alternative algorithms have been
developed which make approximations to the inverse Hessian. Whichever method is chosen,
the success of the inversion will be largely determined by the accuracy of the numerical model.
In the following sections we discuss which class of minimization algorithm and which models
of light propagation are most suitable for QPAT.

3.1. Jacobian-based methods

Minimization-based approaches for QPAT were proposed in [7] and [26], where it was
demonstrated that both optical coefficients may be simultaneously determined from a set
of PAT images by using a Gauss–Newton minimization scheme and a finite element (FE) light
model based on the full RTE [25]. The main drawback of the Gauss–Newton method is the
computational expense required for its execution; the technique looks to solve a regularized
version of (10) by constructing an approximation to the Hessian matrix using the absorption and
scattering Jacobian matrices, which is then used in a Gauss–Newton step to update (μa, μs).
Given that there are Ne elements in the FE mesh and the optical coefficients are defined as
piecewise constant over the mesh elements, the Jacobian matrix could have dimensions as
large as Ne × Ne. For two-dimensional examples the storage of these large, dense matrices
may be computationally feasible, but real PAT images are inherently three-dimensional, and
as the data sets become larger this Jacobian-based technique becomes much less practical.
Furthermore, calculating the functional gradients using an adjoint-assisted Jacobian-based
technique will require significantly more evaluations of the forward and adjoint models than
the adjoint-assisted gradient-based method we propose here. (If the number of unknowns
equals the number of data points equals the number of elements in the mesh Ne, then a Gauss–
Newton iteration will require Ne runs of each of the forward and adjoint models, compared to
one run each for a gradient-based method.) Matrix-free methods, which evaluate only matrix-
vector products when calculating the Hessian approximation [24], could be used to avoid the
memory problem, however, the operation count will remain high. Section 3.2 illustrates the
computational expense when using Jacobian-based methods for QPAT.

3.2. Gradient-based methods

A gradient-based minimization approach was presented in [8], which demonstrated that a
quasi-Newton minimization scheme can be used to recover one optical coefficient given
that the other is known a priori. This technique has recently been extended to recover both
absorption and scattering coefficients simultaneously [2, 13, 14, 22]. Quasi-Newton methods
use the gradient of the error functional with respect to the optical coefficients to obtain the
update to (μa, μs), avoiding the calculation and storage of the Jacobian and Hessian matrices
entirely. Their use therefore provides a computationally efficient alternative which may be
more practical for three-dimensional reconstructions.

To illustrate the advantage of using a gradient-based method, consider recent PAT images
with typical dimensions 8 mm × 8 mm × 3.5 mm and spatial resolution 70 μm [20]. The
spatial resolution of the image will dictate the required discretization of the computational
mesh and hence the number of elements required. For this image size, varying the spatial
resolution between 1 mm and 50 μm results in a range of 484 to >2.8 million elements. Given
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Figure 1. Memory required to store the Hessian approximation using gradient- and Jacobian-
based minimization methods. The number of elements in the computational domain were based on
a typical domain size of 8 mm × 8 mm × 3.5 mm and varying spatial resolution of 1 mm–50 μm.

that we require single precision data and that we are recovering both absorption and scattering
coefficients, the total memory required to store the Hessian approximation for the gradient-
and Jacobian-based methods is shown in figure 1. It is clear that the memory requirement for a
Jacobian-based method becomes significantly large as the resolution improves. For example,
if using a computational mesh with the same size and resolution as the PAT images obtained
in [20], a gradient-based method would require 8.34 MB of memory to store the Hessian
approximation, while a Jacobian-based method would require 8.7 TB.

4. An adjoint-assisted gradient-based method using the RTE

In this section we propose an inversion technique for QPAT, which utilizes an RTE-based
model of light transport and an efficient quasi-Newton minimization scheme. The quasi-
Newton minimization is based on the limited-memory BFGS method, which stores the
gradient information from a user-defined number of iterations to build an iteratively improved
approximation to the Hessian matrix in order to form an update to (μa, μs). For more
information on quasi-Newton methods, including the limited-memory BFGS, see e.g. [23].
The light distribution is calculated using a numerical model of light transport based on the
time-independent RTE [25], ensuring accuracy in all regions of interest for PAT, and the adjoint
RTE operator is used to assist the gradient calculation. Recall that the idea of the minimization-
based approach for QPAT is to minimize the error functional (10). The functional gradient
calculation in the case of a single PAT image is considered first, and an extension to multiple
images using different illumination positions will be included later in section 4.4.

4.1. Definition of operators

The natural space for the radiance is L1(� × Sn−1), for the fluence is L1(�) and for the
optical coefficients is L∞(�). The RTE operator may therefore be written as a mapping
L(μa, μs) : L1(� × Sn−1) → L1(� × Sn−1) such that

L(μa, μs)φ(r, ŝ) = (ŝ · ∇ + μa + μs)φ(r, ŝ) − μsSφ(r, ŝ), (11)
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where S is the scattering operator, defined by S : L1(� × Sn−1) → L1(� × Sn−1), with

Sφ(r, ŝ) :=
∫

Sn−1
�(ŝ, ŝ′)φ(r, ŝ′) dŝ′. (12)

To assist in the functional gradient calculations we will make use of an adjoint equation for
the RTE. The adjoint RTE operator is defined as the mapping L∗(μa, μs) : L1(� × Sn−1) →
L1(� × Sn−1), with

L∗(μa, μs)φ(r, ŝ) = (−ŝ · ∇ + μa + μs)φ(r, ŝ) − μsSφ(r, ŝ). (13)

In PAT, the absorbed energy (4) can be written as a mapping h : L∞(�) × L∞(�) → L1(�)

with

h(μa, μs) = μa

∫
Sn−1

φ(ŝ) dŝ = μa�. (14)

4.2. Error functional gradients

In order to develop a computational scheme we need to use inner product notation, and therefore
modify our choice of spaces such that φ ∈ L2(� × Sn−1), � ∈ L2(�) and μa, μs ∈ L2(�).
From this, the error functional (10) can be written as a mapping E : L2(�) × L2(�) → R

such that

E (μa, μs) = 1

2

∫
�

(hm − h)2 dr

= 1

2
〈hm − h, hm − h〉L2(�). (15)

Using the definition of the Fréchet derivative DE of E , we can write

DEμδ = −〈hm − h, Dhμδ〉L2(�), (16)

where μδ = [
μδ

a μδ
s

]T
represents a small change in the absorption and scattering. Since the

product rule applies to Fréchet derivatives, and since the Fréchet derivative of μa is simply the
identity function, the Fréchet derivative of h is given by

Dh = � + μa(D�). (17)

Substituting this into equation (16) gives

DEμδ = − 〈
hm − h, μδ

a� + μa�
δ
〉
L2(�)

= − 〈
�(hm − h), μδ

a

〉
L2(�)

− 〈μa(h
m − h),�δ〉L2(�), (18)

where �δ represents the change in the fluence due to a small change in the parameters, and is
defined by

�δ = �
(
μa + μδ

a, μs + μδ
s

) − �(μa, μs). (19)

We now define the adjoint field φ∗ as the solution to

L∗φ∗ = μa(h
m − h), (20)

which can be substituted into equation (18) to give

DEμδ = −〈
�(hm − h), μδ

a

〉
L2(�)

− 〈L∗φ∗,�δ〉L2(�). (21)

Since neitherL∗φ∗ nor �δ depends on the direction ŝ, equation (21) can be written equivalently
as

DEμδ = −〈
�(hm − h), μδ

a

〉
L2(�)

− 〈L∗φ∗, φδ〉L2(�×Sn−1 ). (22)
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To obtain an expression for the second term on the right-hand side, we will require a form of
the divergence theorem, which states that∫

∂�

(ŝ · n̂)φ∗(r, ŝ)φδ(r, ŝ) dr =
∫

�

(ŝ · ∇)φ∗(r, ŝ)φδ(r, ŝ) dr

=
∫

�

φ∗(r, ŝ)(ŝ · ∇)φδ(r, ŝ) + φδ(r, ŝ)(ŝ · ∇)φ∗(r, ŝ) dr

= 〈φ∗,Lφδ〉L2(�×Sn−1 ) − 〈L∗φ∗, φδ〉L2(�×Sn−1). (23)

Assuming that φδ = 0 on ∂�, the left-hand side equates to zero, leaving

〈L∗φ∗, φδ〉L2(�×Sn−1 ) = 〈φ∗,Lφδ〉L2(�×Sn−1 ). (24)

Now consider the solution to the RTE (1) for a given source q:

L(μa, μs)φ = q, (25)

and the change in the solution under a small change in the parameters:

L
(
μa + μδ

a, μs + μδ
s

)
(φ + φδ) = q. (26)

By subtraction, we are left with

L(μa, μs)φ
δ = −Lδ

(
μδ

a, μ
δ
s

)
φ + O

(∣∣(μδ
a + μδ

s

)
φδ

∣∣) , (27)

where the perturbation operator is defined as

Lδ
(
μδ

a, μ
δ
s

)
φ(r, ŝ) := μδ

aφ(r, ŝ) + μδ
sφ(r, ŝ) − μδ

sSφ(r, ŝ). (28)

This allows equation (24) to be written as

〈L∗φ∗, φδ〉L2(�×Sn−1) = −〈φ∗,Lδφ〉L2(�×Sn−1), (29)

which can be substituted into equation (22) to give

DEμδ = −〈
�(hm − h), μδ

a

〉
L2(�)

+ 〈φ∗,Lδφ〉L2(�×Sn−1). (30)

Substituting the definition of the pertubation operator (28) and rearranging gives

DEμδ = −〈
�(hm − h), μδ

a

〉
L2(�)

+ 〈
φφ∗, μδ

a

〉
L2(�×Sn−1)

+ 〈
φφ∗, μδ

s

〉
L2(�×Sn−1)

− 〈
φSφ∗, μδ

s

〉
L2(�×Sn−1)

. (31)

The gradient of E with respect to the absorption and scattering coefficients, which we denote
by E ′

μa
and E ′

μs
, respectively, are related to the Fréchet derivative by

DE = 〈E ′
μa,μs

, μδ〉L2(�)×L2(�), (32)

which leads to the expressions for the error functional gradients

E ′
μa

= −�(hm − h) +
∫

Sn−1
φ(ŝ)φ∗(ŝ) dŝ (33)

E ′
μs

=
∫

Sn−1
φ(ŝ)φ∗(ŝ) dŝ −

∫
Sn−1

∫
Sn−1

φ(ŝ)�(ŝ, ŝ′)φ∗(ŝ) dŝ dŝ′. (34)
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4.3. Implementation

When implementing the minimization, the formulation of the numerical light model must be
accounted for, and the continuous gradient calculations should be transferred to their discrete
counterparts. In this work, the absorption and scattering coefficients are considered to be
piecewise constant on the elements of the computational mesh, and can hence be written as

μa ≈ μe
a =

Ne∑
k=1

μk
aχk(r), μs ≈ μe

s =
Ne∑

k=1

μk
sχk(r), (35)

where Ne is the number of elements in the computational mesh and χk is the characteristic
function of element k, which is equal to 1 in the support of element k and 0 elsewhere. In the
FE formulation of the time-integrated RTE, its solution φ is approximated by

φ(r, ŝ) ≈ φh(r, ŝ) =
Nn∑
j=1

Na∑
l=1

φ jlψ j(r)ψl(ŝ), (36)

where Nn is the number of spatial nodes in the computational mesh and Na is the number of
angular directions. φ jl represents the radiance and ψ j(r) and ψl(ŝ) the nodal basis functions
of the spatial and angular FE meshes, respectively, in the nodal point j and direction l. The
FE RTE model calculates the radiance φ by solving

Aφh = b, (37)

where A is the FE system matrix representing the terms in the RTE and b is the source term.
The matrix A can be written as

A = A1 + A2 + A3 + A4, (38)

where A1,...,4 have been obtained by determining a variational formulation of the RTE and
making a finite-dimensional approximation to this variational formulation, constructed using
piecewise linear bases for both the spatial and angular discretizations. The components of A
are given by

A1 = −
∫

�

∫
Sn−1

ŝ · ∇ψ j′ (r)ψl′ (ŝ)ψl(ŝ) dŝψ j(r) dr, (39)

A2 =
∫

∂�

ψ j(r)ψ j′ (r) dS
∫

Sn−1
(ŝ · n̂)+ψl(ŝ)ψl′ (ŝ) dŝ, (40)

A3 =
∫

�

(
μe

s + μe
a

)
ψ j(r)ψ j′ (r) dr

∫
Sn−1

ψl(ŝ)ψl′ (ŝ) dŝ, (41)

A4 = −
∫

�

μe
sψ j(r)ψ j′ (r) dr

∫
Sn−1

∫
Sn−1

�(ŝ, ŝ′)ψl(ŝ′) dŝ′ψl′ (ŝ) dŝ. (42)

The fluence �e is equal to the integral of the radiance over all directions, and can therefore be
calculated from

�e = Mφh, (43)

where M is a measurement matrix which performs the summation over the angular directions.
The measurement matrix also has the effect of expressing the fluence as piecewise constant
over the mesh elements; its value over a single element is the average of its value at each node
attached to that element. This average is taken because the absorbed energy is the product of
the absorption coefficient and the fluence, with

he = μe
a�

e, (44)

10



Inverse Problems 29 (2013) 075006 T Saratoon et al

and since the absorption coefficient is piecewise constant over the mesh elements it is not
defined at element boundaries and hence not at the mesh nodes. Another way to overcome
this problem would be to express the absorption coefficient using nodal basis functions. For
notational convenience we will now write μa = μe

a, μs = μe
s , φ = φh, � = �e and h = he.

Using this implementation, the gradients of the least-squares error functional (10) with respect
to μa and μs, corresponding to equations (33) and (34), are given by

E ′
μa

= − �T(hm − h) + φT
(
A′

μa

)T
φ∗, (45)

E ′
μs

= φT
(
A′

μs

)T
φ∗, (46)

where φ∗ can be found by solving the adjoint model

ATφ∗ = (μaM)T(hm − h). (47)

The terms A′
μa

and A′
μs

are the gradients of the FE system matrix (38) with respect to the
absorption and scattering coefficients, respectively. In the absorption case for each element
k = 1, . . . , Ne this is the single term

A′
μk

a
=

∫
�

χk(r)ψ j(r)ψ j′ (r) dr
∫

Sn−1
ψl(ŝ)ψl′ (ŝ) dŝ, (48)

while in the scattering case there are the two terms

A′
μk

s
=

∫
�

χk(r)ψ j(r)ψ j′ (r) dr
∫

Sn−1
ψl(ŝ)ψl′ (ŝ) dŝ (49)

−
∫

�

χk(r)ψ j(x)ψ j′ (x) dr
∫

Sn−1

∫
Sn−1

�(ŝ, ŝ′)ψl(ŝ′) dŝ′ψl′ (ŝ) dŝ. (50)

4.4. Extension to multiple illumination positions

To avoid the nonuniqueness encountered when recovering both absorption and scattering from
a single PAT image, we must include additional information into the problem [3]. In this work
we have chosen to use a multiple-illumination approach, whereby a set of images are obtained
using sources placed at different positions around the image domain. This technique therefore
requires that we sum over the number of sources used. If Np is the number of source positions,
then the error functional becomes

E = 1

2

Np∑
p=1

∫
�

(
hm

p − hp
)2

dr (51)

and the functional gradients are given by

E ′
μa

= −
Np∑

p=1

�T
p

(
hm

p − hp
) +

Np∑
p=1

φT
p

(
A′

μa

)T
φ∗

p, (52)

E ′
μs

=
Np∑

p=1

φT
p

(
A′

μs

)T
φ∗

p, (53)

where the subscript (·)p denotes the quantity at the pth source position.
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4.5. Regularization

To dampen the effects of noise in the inversions, a first order Tikhonov regularization penalty
term is added to the error functional whenever noise is present in the simulated data. With this
inclusion, the error functional becomes

E =
Np∑

p=1

∫
�

1

2

(
hm

p − hp
)2

dr + α

2
Lμa + β

2
Lμs, (54)

where α and β are two constant scaling factors and L is a discrete implementation of the
Laplacian matrix. The corresponding functional gradient expressions are then given by

E ′
μa

= −
Np∑

p=1

�T
p

(
hm

p − hp
) +

Np∑
p=1

φT
p

(
A′

μa

)T
φ∗

p − αμT
a Lμa, (55)

E ′
μs

=
Np∑

p=1

φT
p

(
A′

μs

)T
φ∗

p − βμT
a Lμa. (56)

5. Results and discussion

5.1. Simulation of PAT images

The gradient-based method described in section 4 was tested using two-dimensional simulated
PAT images. To simulate a set of PAT images using multiple illumination positions, the optical
coefficients (μa, μs) were defined on the square � = [0, 8] × [0, 8] mm2, represented by a
discretized mesh containing 3720 triangular elements. Using a source term q = (q1, q2, q3, q4),
representing four different planar illuminations along each edge of the domain, a numerical
model based on the time-integrated RTE (1) with boundary condition (2) was solved for the
radiance φ. The streamline diffusion modification was included to overcome the ray effect
which may disturb the FE solution to the RTE (see the appendix for more details). Equations (3)
and (4) were used to obtain four absorbed energy maps h, from which a corresponding set
of initial pressure distributions p0 were found using (5). This provides the initial condition
(7) required to solve the photoacoustic wave equation (6) and obtain four sets of acoustic
pressure time series. The data was interpolated onto a rectangular grid and equation (6) was
solved using a collocation pseudo-spectral time-domain acoustic model [27], with acoustic
detectors placed along each edge of the domain. Gaussian noise, at a level of 1% of the
maximum value of the acoustic pressure, was added to these time series to replicate the type
of measurement noise encountered in practice, e.g. thermal noise in the detector. The initial
pressure distribution was then found using a time-reversal image reconstruction technique
[27, 28]. The Grüneisen parameter was assumed to be known and constant throughout the
tissue, with �(r) = 1 ∀r ∈ �, so that the measured absorbed energy maps hm were found
trivially from equation (8). Due to the presence of noise in the acoustic data it is possible
that the resulting images may contain negative values of absorbed optical energy; since these
do not make physical sense, any negative values of hm were set equal to zero. This set of
simulated, noisy images then provide the measured data from which the optical coefficients
are to be recovered.

5.2. Inversion example: smooth optical coefficients

Using the method described above, a set of PAT images were simulated using smoothly-
varying optical coefficients such that 0 � μa � 0.3 mm−1, 1 � μs � 3 mm−1 and g = 0.6.
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(A) (C)

(B) (D)

Figure 2. Results of the gradient-based inversion using smooth coefficients after 400 iterations.
The figures show the true and recovered absorption coefficient μa ((A) and (C), respectively)
and the true and recovered scattering coefficient μs ((B) and (D), respectively). The simulated
PAT image included the acoustic inversion step and additive 1% Gaussian noise. A first order
Tikhonov scheme was included to dampen the effect of noise in the inversion. The colour scale
represents mm−1.

In biological tissue the ansitropy factor g is typically closer to 0.9, however, using a higher
value of g in the RTE model requires a finer angular discretization, and subsequently increases
the computational burden. When g = 0.6, the RTE model is accurate if Na � 16. The value
of g directly affects the reduced scattering coefficient μ′

s = μs(1 − g), which describes the
scattering of photons in the diffusive regime. The values of μa and μs were therefore chosen
to ensure that μa and μ′

s were typical of problems in biomedical applications. The results of
the gradient-based inversion using noisy simulated PAT images can be seen in figure 2. These
show the true and recovered optical coefficients after 400 iterations of the l-BFGS method.
The percent relative errors in the absorption and scattering coefficients, denoted εa and εs,
respectively, were calculated using

εa,s = ‖μa,s − μ̃a,s‖
‖μa,s‖ × 100, (57)

where μa,s represents the true value of the absorption or scattering coefficient and μ̃a,s

represents their estimated values. In these reconstructions, values of εa = 4.4% and εs = 6.7%
were achieved. A cross-section in the x-direction of the inversion results can be seen in figure 3.

The directionally randomizing nature of light propagation in scattering media and the
relative insensitivity of the objective function on μs mean that recovering the scattering
coefficient is typically more difficult than recovering the absorption coefficient. A study of the
sensitivity to changes in the optical parameters can be found in [26]. Since it is the absorption
coefficient that will be required to obtain a map of the chromophore concentrations the strong
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(A)

(B)

Figure 3. Results of the gradient-based inversion using smooth coefficients after 400 iterations. (A)
and (B) are profiles, taken in the x-direction, corresponding to figure 2, and show the true (solid)
and recovered (dashed) absorption coefficient μa and scattering coefficient μs, respectively.

dependence on μa is favourable, however, since its accuracy depends on the accuracy of the
scattering estimate, recovering μs is still necessary.

Gradient-based methods typically take a larger number of iterations than Jacobian-based
methods; this is certainly the case here, as it has been shown that Jacobian-based methods
have successfully recovered both optical coefficients in as few as five iterations [26]. A brief
discussion of the relative advantages of gradient- and Jacobian-based methods can be found
later in section 5.4.

5.3. Inversion example: non-smooth coefficients

Since PAT is particularly well-suited to imaging the blood vasculature, it is common to see
non-smooth structures such as blood vessels in an image. For this reason, the method was
also tested using non-smooth optical coefficients. The PAT images were simulated in the same
way as described above, though now the absorption and scattering coefficients consisted of a
constant background value with absorbing and scattering rectangular structures, respectively,
which were designed to partially overlap. The optical coefficients were defined by

μa(r) = 0.3, r ∈ �1, �1 = [1.5, 4.5] × [3.5, 6.5] mm2

μa(r) = 4/3, r ∈ �2, �2 = [5, 7] × [1, 3] mm2

μa(r) = 0.1, r ∈ (�\(�1 ∪ �2))

(58)

μs(r) = 4/3, r ∈ �1, �1 = [1, 3] × [5, 7] mm2

μs(r) = 3, r ∈ �2, �2 = [3.5, 6.5] × [1.5, 4.5] mm2

μs(r) = 1, r ∈ (�\(�1 ∪ �2)).

(59)

The simulated PAT images were obtained using the same method as above, and also included
Gaussian noise at a level of 1% of the maximum value of the acoustic pressure and a first-order
Tikhonov regularization scheme. The results of the inversion after 400 iterations using these
non-smooth optical coefficients can be seen in figure 4, and a profile in the x-direction is shown
in figure 5. In these reconstructions, values of εa = 11.7% and εs = 21.3% were achieved. As
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(A) (C)

(B) (D)

Figure 4. Results of the gradient-based inversion using non-smooth coefficients after 400 iterations.
The figures show the true and recovered absorption coefficient μa ((A) and (C), respectively)
and the true and recovered scattering coefficient μs ((B) and (D), respectively). The simulated
PAT image included the acoustic inversion step and additive 1% Gaussian noise. A first-order
Tikhonov scheme was included to dampen the effect of noise in the inversion. The colour scale
represents mm−1.

(A)

(B)

Figure 5. Results of the gradient-based inversion using non-smooth coefficients after 400 iterations.
(A) and (B) are profiles, taken in the x-direction, corresponding to figure 4, and show the true (solid)
and recovered (dashed) absorption coefficient μa (A) and scattering coefficient μs (B), respectively.
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Figure 6. Relationship between the number of elements in the computational mesh and the total
time taken to recover both optical coefficients when using the l-BFGS method (solid) and the
Gauss–Newton method (dashed). Results are based on noise-free data which does not include the
acoustic inversion step.

in the case of smooth optical coefficients, the absorption coefficient is recovered quicker and
more accurately than the scattering coefficient. A Tikhonov regularization scheme was used
for consistency with section 5.2, but in the case of non-smooth coefficients it is likely that the
results would be improved by the inclusion of an edge-preserving regularization method, such
as total variation [14].

5.4. Comparison with Jacobian-based methods

The presented gradient-based inversion method has been shown to successfully recover both
absorption and scattering coefficients from a simulated PAT image. Although it is more
efficient from a computational storage perspective, gradient-based methods typically require a
larger number of iterations to perform the inversion than a Jacobian-based method. However,
since Jacobian-based methods require Ne times more evaluations of the forward and adjoint
model to calculate the functional gradients, one iteration of the adjoint-assisted gradient-based
inversion is significantly quicker than one iteration of a Jacobian-based method. This means
that the increased number of iterations required of a gradient-based method may not have a
negative effect on the total computational time taken to recover (μa, μs). To investigate how the
completion time of the inversion scales as the data set becomes larger, the presented gradient-
based method was performed on increasingly fine computational meshes and compared with
the performance of a corresponding Jacobian-based minimization scheme, namely the Gauss–
Newton method. In this case 0.01 � μa � 0.3, 1 � μs � 3, g = 0.6, no additive Gaussian
noise was added to the data and the acoustic inversion step was not included.

Minimizations using the gradient- and Jacobian-based methods were performed on
computational meshes with 224, 960, 1860, 3720 and 7938 elements, and the time taken
to recover both optical coefficients was recorded. To compare the two methods fairly, the time
taken to recover (μa, μs) was taken to be the time required to achieve an estimate of the
scattering coefficient to within 5% of its true value (i.e. εs < 5). The time taken to perform the
inversions for each computational mesh using both the l-BFGS and Gauss–Newton methods
can be seen in figure 6. In all cases, the gradient-based l-BFGS method took a larger number of
iterations than the Jacobian-based Gauss–Newton method to recover (μa, μs). In the case of
the 224- and 960-element meshes the Gauss–Newton method took less time than the l-BFGS
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method. The methods took roughly the same amount of time to recover both coefficients when
using the 1860-element mesh, with the l-BFGS taking just over 1 h 33 min and the Gauss–
Newton method taking just over 1 h 38 min. For meshes finer than this the total time to recover
(μa, μs) when using the Gauss–Newton method was significantly longer than the l-BFGS
method. Though neither the l-BFGS or Gauss–Newton codes used to achieve these results
are optimized, so the absolute time carry no significance, the trend suggests that a gradient-
based minimization scheme is more efficient not only in terms of memory required, but in
realistically sized cases may also perform the full inversion more quickly than a corresponding
Jacobian-based method.

6. Conclusions

An adjoint-assisted, gradient-based minimization method has been shown to succesfully
determine the absorption and scattering coefficients from a set of two-dimensional, simulated
PAT images. The model-based inversion utilizes the full radiative transfer equation and includes
the acoustic propagation and reconstruction step in the simulation of the images, so that
the full quantitative inversion has been tackled. The gradient-based minimization seeks to
minimize a nonlinear least-squares error functional quantifying the difference between the set
of measured PAT images and the modelled data, and was performed using the l-BFGS quasi-
Newton method. The advantage of using a gradient-based method comes from the fact that the
storage of large, dense matrices is avoided, so that from a storage perspective they are more
computationally efficient that a corresponding Jacobian- or Hessian-based method. Gradient-
based methods typically require a greater number of iterations to perform the inversion,
however, a brief comparison of the performance of the gradient-based l-BFGS method and the
Jacobian-based Gauss–Newton method has indicated that it scales better for large problems,
despite the larger number of iterations required.

There are a number of reasons why one might wish to obtain quantitative estimates of
chromophore concentrations, and if a minimization-based method is to be used it may be worth
considering to what degree of accuracy these concentrations are required before performing
the inversion. Since the absorption estimate is likely to improve only fractionally after some
point and at significant computational expense, depending on the application it may not be
worthwhile to continue with the minimization to further improve the reconstructions and
determine the scattering coefficient.

The success of the inversion when including the acoustic inversion step in the PAT image
simulation is encouraging, since these simulations mimic more closely the types of artifacts
and noise present in a real PAT image. Extending the method to three-dimensional data in
order to observe exactly how practical the presented gradient-based method will be the subject
of future work.
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Appendix. Streamline diffusion modification

The streamline diffusion modification was included in the numerical light transport model to
overcome the ray effect which may disturb the finite element solution to the RTE [16, 25].
Including this modification means that the terms of (38) become

A1 = −
∫

�

∫
Sn−1

ŝ · ∇ψ j′ (r)ψl′ (ŝ)ψl(ŝ) dŝψ j(r) dr

+
∫

�

δ

∫
Sn−1

(ŝ · ∇ψ j′ (r)ψl′ (ŝ))(ŝ · ∇ψ j(r)ψl(ŝ)) dŝ dr, (A.1)

A2 =
∫

∂�

ψ j(r)ψ j′ (r) dS
∫

Sn−1
(ŝ · n̂)+ψl(ŝ)ψl′ (ŝ) dŝ, (A.2)

A3 =
∫

�

(
μe

s + μe
a

)
ψ j(r)ψ j′ (r) dr

∫
Sn−1

ψl(ŝ)ψl′ (ŝ) dŝ

+
∫

�

δ
(
μe

a + μe
s

) ∫
Sn−1

ŝ · ∇ψ j′ (r)ψl′ (ŝ)ψl(ŝ) dŝψ j(r) dr, (A.3)

A4 = −
∫

�

μe
sψ j(r)ψ j′ (r) dr

∫
Sn−1

∫
Sn−1

�(ŝ, ŝ′)ψl(ŝ′) dŝ′ψl′ (ŝ) dŝ

−
∫

�

δμe
s

∫
Sn−1

ŝ · ∇ψ j′ (r)ψl′ (ŝ)
∫

Sn−1
�(ŝ, ŝ′)ψl(ŝ′) dŝ′ dŝψ j(r) dr, (A.4)

where δ is a smoothing parameter which depends on the local absorption and scattering.
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