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Abstract
Biomedical photoacoustic tomography (PAT) is a soft-tissue imaging modality
which combines the high spatial resolution of ultrasound (US) with the contrast
and spectroscopic opportunities afforded by imaging optical absorption. Planar
US arrays composed of piezoelectric or optical detector elements with small
element sizes and fast acquisition times are readily available, making them an
attractive option for imaging applications. An exact and efficient, FFT-based
PAT reconstruction algorithm, that converts acoustic measurements recorded
over a plane to a PAT image, is known. However, to capture sufficient data
for an exact PAT reconstruction with a planar geometry requires an infinitely
wide array. In practice it will be finite, resulting in a loss of resolution and
introducing artefacts into the image. To overcome this limitation it is proposed
that acoustic image sources, provided by enclosing the target in a reverberant
cavity, are used to generate a periodically repeating sound field. Measurements
of this periodic sound field can be used to reconstruct a PAT image exactly from
measurements of reverberation made over a finite aperture. The existing FFT-
based PAT reconstruction algorithm with only minor additional modifications
can be used to generate the image in this case.

1. Introduction

In biomedical photoacoustic tomography (PAT), soft tissue is illuminated with a short pulse
of monochromatic light, and the acoustic (ultrasonic) pressure pulses that are emitted from
the regions in which the light is absorbed are detected at the tissue surface. By recording
these ultrasonic waves over an array of receivers, or with a single, scanned detector, the
initial distribution of the acoustic pressure can be estimated. The image of the initial pressure
distribution,which is proportional to the absorbed energy density, is called a photoacoustic
or optoacoustic image. Image reconstruction in PAT may be considered an inverse source
problem in the sense that the initial pressure distribution acts as a source term in the associated
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Figure 1. In photoacoustic tomography, acoustic time histories are measured on all or part of the
surface S which surrounds the region V containing �, within which the source, the initial pressure
distribution, p0, has compact support.

forward or direct problem. When the excitation light is replaced by microwave or RF radiation
the technique is called thermoacoustic tomography. PAT has been used successfully in a variety
of applications, including imaging of vasculature [1–3], visualization of breast tumours [4, 5]
and functional brain imaging in small animals [6].

The forward and inverse (imaging) problems of PAT are described briefly below. This
paper is concerned principally with image reconstruction from measurements made over
a planar measurement surface. Section 2 contains a description of both the continuous and
discrete forms of a well-known PAT image reconstruction algorithm for use with measurements
recorded over a plane. It is shown that using acoustic pressure measurements recorded over a
planar measurement surface that is finite in extent leads to image artefacts: the ‘finite aperture’
problem. Section 3 introduces the central idea in this paper: a PAT image with considerably
reduced image artefacts can be formed from measurements of the reverberant field between
two parallel acoustic reflectors via the discrete image reconstruction algorithm of section 2,
without having to modify it significantly. In effect, using reverberant data in the reconstruction
is equivalent to recording data over a larger measurement aperture. In section 4 a theorem of
Louis and Quinto [7] concerning stably reconstructable boundaries within an image is used
to examine the concept of an ‘effective measurement aperture’. The paper concludes with a
discussion of the advantages of this technique over conventional methods of measurement and
reconstruction in PAT.

1.1. Forward problem

Let V be the domain with boundary S in which the acoustic field propagates, and let � ⊂ V

be the support of non-zero optical absorption (figure 1). When (a) the tissue behaves as a
stationary fluid with isotropic acoustic properties, (b) viscosity and thermal conductivity are
negligible, (c) the sound generation mechanism is thermoelastic, and (d) the linear acoustic
approximation holds, the acoustic pressure, p(x, t), x ∈ V , obeys the scalar wave equation(

∇2 − 1

c2

∂2

∂t2

)
p = −β

Cp

∂H
∂t

, (1)
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where c is the sound speed, β is the volume thermal expansivity, and Cp is the specific heat
capacity, all assumed constant in V . The absorbed optical energy density, H = µa�, is the
heat energy deposited in the tissue per unit volume and per unit time, where µa is the optical
absorption coefficient and � is the fluence rate. The propagation of light in an absorbing and
scattering medium is a complicated, diffusion-like process, and � depends on the distribution
of scattering and absorption within V , as well as the light sources. However, the distribution of
� is not directly relevant to the results in this paper, which is concerned only with recovering
the initial pressure distribution, and not with taking the further step to recover µa or � [8, 9].

When the excitation light pulse is sufficiently short that the density of the tissue may
be considered constant over its duration (sometimes called stress confinement), then the time
dependence of the excitation may be modelled as a δ function, H(x, t) = H(x)δ(t), and the
forward model can be recast as the initial value problem(

∇2 − 1

c2

∂2

∂t2

)
p = 0 (2)

p|t=0 ≡ p0(x)
∂p

∂t

∣∣∣∣
t=0

= 0. (3)

Under this isochoric condition, the increase in the temperature T ′(x), x ∈ �, is given by
T ′ = H/(ρCv), where Cv is the constant-volume specific heat capacity and ρ the ambient mass
density. The thermodynamic relation ρ ′ = ρκT p′ − βρT ′, where ρ ′ and p′ are perturbations
in density and pressure respectively, is true for constant isothermal compressibility κT and
volume thermal expansivity β. As there is no change in the density, ρ ′ = 0 and p′ = (β/κT )T ′.
As κT = γ /ρc2, where γ is the ratio of specific heats, the increase in pressure due to the
absorption of the laser pulse, the initial pressure distribution p0, may be written as

p0 =
(

βc2

Cp

)
H = 	H (4)

	 is called the Grüneisen coefficient.

1.2. Inverse problem

The aim in PAT is to recover p0(x), x ∈ V , from acoustic pressure time histories, p(xs , t),
measured at points on the boundary, xs ∈ S. As the mean value of the time-integrated pressure
time history recorded up to time t at xs is equal to the mean value of the initial pressure
distribution on the sphere with radius ct centred at xs ,

1

t

∫ t

0
p(xs , t

′) dt ′ = 1

4π(ct)2

∫
A

p0(x) dA, (5)

where the spherical surfaces A are given by |xs −x| = ct with area 4π(ct)2, the reconstruction
problem is one of recovering a function from its mean values on spherical shells of
radius ct centred on xs . Closed form reconstruction algorithms have been devised for
measurement surfaces with spherical [10–13], cylindrical [10, 14, 15] and planar geometries
[10, 16, 17]. Image reconstruction based on a numerical model, which can thus accommodate
a measurement surface with arbitrary geometry, has also been proposed [18]. In addition to
these, a number of other methods of reconstruction have been investigated [19–30].

2. Image reconstruction from planar measurements

A planar measurement geometry is considered here because, as well as the practical
experimental advantages that a flat measurement surface offers, planar US arrays composed
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of piezoelectric or optical elements [31] with small element sizes and fast acquisition times
are readily available, and, most importantly, an exact and efficient reconstruction algorithm
is known for this case. There is a fundamental difference between measurements made over
spherical and planar surfaces. When the measurement surface surrounds the source region, all
the emitted acoustic waves are recorded. However, for a single planar measurement surface—
even if infinite in extent—at most half of the acoustic emissions can be measured. Nevertheless
it is still possible, in principle, to recover p0 as there is a two-fold data redundancy in PA
imaging: the sources generate two sets of waves travelling in opposite directions [32].

The problem with a planar geometry is that in practice the measurements are restricted
to a finite region of the infinite plane which, when using a reconstruction algorithm which
assumes an infinite plane, leads to artefacts in the image. This paper proposes a method of
overcoming this ‘finite aperture’ problem, by reflecting the acoustic field back onto the finite
measurement surface. It is shown, in section 3, that an image may be reconstructed from this
reverberant data using an existing image reconstruction algorithm, described below, which
was originally derived for the case of an infinite measurement surface.

2.1. Reconstruction algorithm: continuous

The reconstruction algorithm used in this paper, and similar frequency–wavenumber schemes
for measurements made on a plane, appear in the literature on inverse scattering problems, such
as seismic migration [33, 34], ultrasound imaging [10, 35] and synthetic aperture radar [36],
as well as in the mathematical literature on reconstructing a function from spherical averages
[37, 38]. It was first described explicitly for PAT by Köstli et al [16] and more recently by
Xu et al [17]. A 2D version [39] is briefly described below but as the method is based on
Cartesian k-space it may be extended quite simply to 3D. First, an infinite and continuous
planar measurement surface is considered, then the continuous solution is discretized to obtain
a practical reconstruction routine.

If p0(x, z) = 0 for z � 0 then p0 for z > 0 may be recovered from p(x, t), t � 0,
measured on the plane z = 0, in three steps:

(1) Fourier transform p(x, t) from the spatial variable x to wavenumber kx , and from the
time t to the frequency ω domain. With no loss of generalization, p, which is real, can be
assumed to be even in t, resulting in a transformed function, P, that is even in ω:

P(kx, ω) =
∫ ∞

−∞

∫ ∞

−∞
p(x, t) e−ikxx eiωt dx dt. (6)

(2) Map P(kx, ω) to P0(kx, kz) for real kz, where kz is the spatial wavenumber in the z

direction and is given by the dispersion relation

kz = sgn(ω)

√
(ω/c)2 − k2

x, (7)

where sgn(ω) = 1 for ω � 1 and −1 otherwise. Multiply by c2|kz/ω| to get

P0(kx, kz) =
∣∣∣∣∣ ckz√

k2
x + k2

z

∣∣∣∣∣ P (
kx, c sgn(kz)

√
k2
x + k2

z

)
. (8)

(3) Inverse Fourier transform P0(kx, kz), even in kz, to obtain the initial pressure distribution,
p0(x, z), real and even in z:

p0(x, z) = 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
P0(kx, kz) ei(kxx+kzz) dkx dkz. (9)
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Only p0(x, z) for z > 0 represents the true initial pressure distribution; the half of the image
for which z < 0 is a reflection about z = 0 which arises from the symmetries assumed above
[16, 40]. This algorithm inverts the radiating part of the acoustic field, measured on the plane
z = 0, to obtain the initial pressure distribution p0(x, z). The evanescent wave components
are implicitly rejected in step two by considering only real kz. Effectively, mapping the data
from time to depth, t to z, and using an FFT to calculate the Fourier transform, makes this
algorithm very efficient.

2.2. Reconstruction algorithm: discrete

By substituting discrete for continuous variables and sampled for continuous functions in
equations (6)–(9), a discrete version of the reconstruction formula above can be obtained. The
sampled functions are related to their continuous counterparts as follows:

pnm ≡ p(x, t)|x=n�x,t=m�t (10)

for sample spacings �x and �t , and where n = 0, . . . , N − 1 and m = −M/2, . . . ,M/2 − 1,
as time t = 0 corresponds to the (M/2 + 1)th sample (for simplicity M is assumed
to be an even number). Similarly p0nm ≡ p0(n�x,m�z), Pkl ≡ P(k�kx, l�ω) and
P0kq ≡ P0(k�kx, q�kz) for k = −N/2, . . . , N/2 − 1 and l = q = −M/2, . . . , M/2 − 1.
The discrete versions of equations (6)–(9) may then be written as

Pkl = FFT{pnm} (11)

l̂kq = sgn(q) round
{√

q2 + a2k2
}
, a = cM�t/N�x (12)

P0kq = AkqPkl̂kq
, Akq = |cq/l̂kq |. (13)

p0nm = IFFT{P0kq}. (14)

The usual care must be taken to ensure that the wavenumber components calculated by the
FFT routine are ordered correctly, with the component corresponding to zero wavenumber in
the centre. Equations (12) and (13) were obtained by using the relations �kx�x = 2π/N and
�ω�t = 2π/M , and by setting �z = c�t and �kz�z = 2π/M .

Note that, because of the interpolation error introduced in equation (12), p0nm will have
a small non-zero imaginary component, whereas p0(x, t) is real. However, only �{p0nm} for
m = 0, . . . ,M/2 − 1 corresponds to the initial pressure distribution p0(x, z), z > 0.

2.3. Example using a finite aperture and no image sources

Pressure time histories, figure 2(B), were simulated from the 2D initial pressure distribution
shown in figure 2(A) for an array of detectors positioned along the line z = 0. These
forward calculations were performed using a k-space model [41, 42], on a 512 ×
512 pixel, square grid corresponding to 10 mm × 10 mm, or spatial steps of 39 µm, in
5000 time steps of 7.8 ns, corresponding to a Nyquist frequency of about 64 MHz. An initial
pressure distribution consisting of regularly spaced circular sources was chosen to demonstrate
how the quality of the recovered image varies with position. This source distribution was
smoothed to ensure no frequencies greater than the Nyquist frequency were included in the
simulated data. Gaussian noise was added to the simulated pressure data at a signal-to-noise
ratio of 30 dB.

The discrete reconstruction algorithm described in section 2.2 was used to form an image.
First, the pressure time histories pnm, shown in figure 2(B), were Fourier transformed to give
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Figure 2. (A) The true initial pressure distribution, used to simulate (B) the pressure time histories,
pnm, for an array of detectors along the line z = 0, for a 20 mm aperture, −10 mm � x < 10 mm,
in space and time steps of 39 µm and 31 ns, respectively. (C) The Fourier transformed pressure
data, Pkl , on a log scale. (D) The discrete frequency index lkq as a function of the horizontal and
vertical wavenumber indices k and q, used to map from (C), Pkl , to (E), P0kq . (F) The estimate
of the initial pressure distribution reconstructed from the finite-aperture data, p0nm. The distortion
and blurring introduced by the finite aperture is evident. The quality of the reconstruction decreases
with distance from the centre of the detector array.

Pkl , figure 2(C). Then P0kq , figure 2(E), was estimated, using nearest-neighbour interpolation,
from Pkl using lkq as given by equation (12) and shown in figure 2(D). Finally P0kq was
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inverse Fourier transformed to give an estimate of the initial pressure distribution, figure 2(F).
Comparing the recovered image, figure 2(F), with the true distribution, figure 2(A), shows that
the features closest to the centre of the detection surface were recovered accurately. However,
the distortion and blurring of the image increases quickly the further one moves from the centre
of the detector plane, particularly in the direction of increasing z. The circles in the top line,
about 17 mm from the detector plane, are almost blurred together in the reconstructed image,
despite there being 1 mm gaps between them. The image resolution is strongly dependent on
the distance from the detector and also, but to a lesser extent, on the distance from x = 0, in
this finite aperture case.

3. Reverberant field photoacoustic tomography

3.1. Acoustic reflectors

One of the limitations of using a planar sensor array is its finite measurement aperture. While
a spherical detection surface can measure over a solid angle of 4π steradians, and the infinite
planar sensor over 2π steradians (still sufficient to reconstruct an exact image), any planar
sensor with a finite aperture is limited to solid angles somewhat smaller than this, often 1
steradian or less. By increasing the width of the aperture, and thus capturing more data,
the image can be improved. However, measuring over large planar apertures soon becomes
impracticable due to the increasing technical complexity and prohibitive cost of very large
arrays. For measurement surfaces that, to a greater or lesser extent, surround the source, such
as a spherical measurement surface, the effect of this finite aperture problem can be reduced.
However, the efficiency and accuracy of the FFT reconstruction algorithm may then be lost.

An image reconstructed from limited-aperture data may contain artefacts, and sharp
boundaries may be blurred, as is clear from figure 2. More specifically, only boundaries where
the normal to the boundary crosses the measurement surface can be reconstructed accurately
[7, 43] which means that, for a small aperture, many of the boundaries in the image, especially
those perpendicular to the measurement surface, become indistinct. This paper proposes
placing acoustic reflectors at either end of, and perpendicular to, the measurement aperture
so that the acoustic waves that would not have been recorded with just the finite aperture, i.e.
acoustic rays that would have missed the sensor, are recorded as reverberation. The image
reconstructed from this reverberant field contains fewer artefacts because more of the acoustic
data have been used in the reconstruction. The reflectors act to extend the aperture width
beyond the size of the sensor to an ‘effective’ aperture which depends on the duration of the
measurement. It is shown, using examples, that boundaries within the image whose normals
cross this ‘effective measurement aperture’ can be reconstructed well. A preliminary account
of this approach is given in [44].

In this paper it is assumed that the reflectors are perfectly reflecting with the modulus
of the reflection coefficient |R| = 1. If the acoustic waves are propagating in water (c =
1500 m s−1, ρ = 1000 kg m−3), then a dense material with a fast sound speed, such as steel
with a normal incidence reflection coefficient of 0.94, would be required in practice. An
alternative might be silica (glass) with |R| = 0.8, which has the advantage of being optically
transparent, thereby allowing the excitation light through to the sample to be imaged. Optical
transparency is not an essential requirement of the reflectors, as the sample may be illuminated
from above, or even through the sensor in some cases, but it allows greater flexibility in the
illumination geometry. Plastics such as PMMA, with |R| ≈ 0.4, may not be sufficiently
reflecting for this application. In principle, a pressure release boundary, where the acoustic
pressure is always zero and R = −1 (such as that faced by a water-borne wave reaching a
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Figure 3. Schematic diagram of the arrangement of the planar sensor array and acoustic reflectors,
showing the first few image sources. With the image sources, the effective source distribution
becomes infinitely wide and repeats every 2X, where X is the distance between the reflectors.

water–air interface), could be used with only minor adjustments to the theory, but this will
present a greater engineering challenge than using a solid boundary.

3.2. Periodicity and image sources

The discrete reconstruction algorithm given by equations (11)–(14) implicitly assumes the
periodicity of p0nm through the use of the FFT. It is well known that a discrete Fourier
transform assumes that the data to be transformed are part of a periodic function. Or, to
put it the other way, transforming a function given at only discrete wavenumbers, e.g. a line
spectrum such as Pk = P(k�kx) for k ∈ Z, implicitly assumes that the resulting function, in
this case p(x), is ever-repeating, such that p(x + jX) = p(x),∀j ∈ Z. As the true initial
pressure distribution is rarely periodic—and so the measured acoustic time histories do not
originate from a periodic source distribution—the discrete estimate of that source distribution,
p0np, will be distorted. The origin of the distortion can be traced back to the measured data,
pnm, from which P0kq is estimated. pnm includes the sound that has travelled from the initial
pressure distribution, p0(x, z), but does not include the sound from the infinite number of
repeating replicas p(x + jX, z), j 
= 0, which would appear if it were periodic but actually do
not exist. The underlying problem is that the measured p(x) is not part of a periodic function,
and originates from a non-periodic distribution p0(x).

To visualize the effect of the reflectors on the acoustic field, consider the acoustic image
sources they introduce. As there are two parallel and perfectly reflecting reflectors, the number
of image sources is infinite and the acoustic field may be considered as infinitely repeating
with a period of twice the distance between the reflectors, thereby fulfilling the requirement
for a periodic function. This is shown schematically in figure 3. The data p(x) measured from
0 � x < X can be mirrored to give a repeating function p̂(x)

p̂(x) =
{

p(x) 0 � x < X

p(2X − x) X � x < 2X
(15)

which repeats every 2X, so that p̂(x) = p̂(x + j2X),∀j ∈ Z. The same reconstruction
algorithm as described in section 2 can be used to reconstruct an image from these reverberant
data, giving this method the twin advantages of greater capture angle (‘effective’ aperture
width) and efficient reconstruction. The essential point is that the reconstruction algorithm
implicitly assumes that the acoustic source to be reconstructed is periodic; here it is made
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∆x/2 ∆ x

p1p0 pN-1 pN p2N p0p2N

–X

pN

Figure 4. The pressure must be sampled at (2n + 1)�x/2, n = 0, . . . , N − 1, and then mirrored
about the reflector at X to obtain the repeating sequence of length 2N with period 2X. The points,
between the reflectors, at which measurements are made are shown in black.

periodic through the use of reflectors and the resulting image sources. The image quality
improves because more information about the source distribution has been captured by
recording over a longer time, rather than a larger aperture.

3.3. Sampling

It is necessary to consider the requirements on the sampling of the discrete data. There are
two separate points in this section, the first general and the second specific to the measurement
geometry with acoustic reflectors.

The sampling theorem states that the discrete function p0nm represents its continuous
counterpart p0(x, z) uniquely if p0(x, z) contains no spatial frequency components higher than
half the spatial sampling frequency (the spatial Nyquist wavenumber). In the time domain, an
analogue anti-aliasing filter is used to attenuate components at frequencies greater than half
the sampling frequency. In an analogous way, components at high spatial wavenumbers can
be attenuated by using a sensor that is insensitive to wavenumbers above the spatial Nyquist
wavenumber. The wavenumber response of a circular pressure sensor can be approximated by
2J1(kxa)/kxa, where a is the radius of the sensitive element, and J1 is a Bessel function. The
wavenumber components above about kx(max. measured) ≈12/a are therefore attenuated
by 30 dB or more. The spatial Nyquist wavenumber (the usual condition of two samples
per wavelength) is kx(Nyquist) = 0.5 × (2π/�x). In order to avoid spatial aliasing it is
necessary to ensure that kx(max. measured) < kx(Nyquist) which gives the spatial sampling
requirement

�x < aπ/12 ≈ a/4. (16)

For most types of sensor array, the radius of the sensitive element, a, is fixed. However, for
optically addressed arrays [45, 46] it can sometimes be chosen arbitrarily, thereby allowing
control of the spatial anti-aliasing. If, instead of 30 dB, 15 dB attenuation at the Nyquist
spatial frequency is considered sufficient to remove spatial aliasing, then requirement (16),
which is equivalent to eight measurement points per sensing element diameter, can be reduced
to two measurements points per diameter, or �x < a.

When measurements are made with reflectors in place, the positions of the spatial sampling
points with respect to these reflectors is important, to ensure that the samples represent a
repeating pattern. The reflectors must be placed a distance �x/2 from the first and last
measurements. In other words, p(x) must be sampled at positions (2n + 1)�x/2, n =
0, . . . , N − 1, giving the measured data {p0, p1, . . . , pN−1}, so that these can be made into
a repeating sequence by mirroring about x = X. The data vector for the reconstruction is
then pn = {p0, . . . , p2N−1}, where p2N−n−1 = pn, n = 0, . . . , N − 1. This is illustrated
in figure 4.



S104 B T Cox et al

x (mm)

tim
e 

(µ
m

)

(A)

−10 −5 0 5 10
0

2

4

6

8

10

12

14

16

18

20

x (mm)

z 
(m

m
)

(B)

−10 −5 0 5 10
0

2

4

6

8

10

12

14

16

18

20

x (mm)

z 
(m

m
)

(C)

−10 −5 0 5 10
0

2

4

6

8

10

12

14

16

18

20

x (mm)

z 
(m

m
)

(D)

−10 −5 0 5 10
0

2

4

6

8

10

12

14

16

18

20

Figure 5. (A) Simulated pressure time histories for an array of detectors along the line z = 0, for
a 20 mm aperture, −10 mm � x < 10 mm, bounded by vertical reflectors, and calculated from the
initial pressure distribution in figure 2(A) using a k-space algorithm. The reverberation resulting
from the reflectors can be seen by comparison with figure 2(B). Images (B)–(D) show estimates of
the initial pressure distribution, p0nm, reconstructed from the pressure time series shown in (A).
In (B) time histories from 0 to 14 µs were used, in (C) this was extended to 20 µs, and in (D) to
40 µs, thereby including more of the reverberant energy.

3.4. Example using a finite aperture with image sources

Because of the reverberation caused by the vertical reflectors, the pressure time histories
will, in theory, continue forever. In practice, however, due to geometric spreading, acoustic
absorption, and reflectors with |R| < 1, the signal will decay to below the noise in a
finite length of time. Figures 5(B)–(D) show images reconstructed from the time histories,
figure 5(A), which have been simulated from the initial pressure distribution in figure 2(A),
although now including the reverberation due to the acoustic reflectors. The data here were
simulated using the same k-space model as for figure 2(B) and the same level of noise is
added. Figures 5(B)–(D) used time histories with durations of 14, 20 and 40 µs, respectively.
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Figure 6. Profiles through the bottom row (left) and third from top row (right) of circles in
figures 2(F), solid line, and 5(C), dotted line, showing the improvement in the reconstruction
further from the sensor when the reverberant data are included.

Figure 6 shows profiles through the bottom row and third from top row of circles in
figures 2(F) and 5(C), i.e. with and without reverberant data.

The improvement in the reconstruction from figure 2(F)—the reduction in the artefacts
and the considerably reduced blurring—is striking even for short duration data (14 µs in
figure 5(B) compared to 20 µs in figure 2(F)). Three differences between these reconstructions
and that of figure 2(F) are apparent. First, while the quality of the reconstruction in figure 2(F)
depends on the position in the image (close to the centre of the sensor the image is accurately
reconstructed and as one moves further from this point the image quality deterioriates), a
different pattern emerges in figures 5(B)–(D). The quality of the reconstruction does not
depend on the distance from the centre of the sensor—the circles at each depth are equally
well recovered—but only on the distance from the measurement plane, the depth z. Second,
this depth dependence is reduced as more reverberation is used in the reconstruction. Both
these features of the image are explained in terms of an ‘effective measurement aperture’
in section 4. Third, artefacts, taking the form of vertical strips aligned with each column
of circles, are more clearly visible in figures 5(B)–(D) than in figure 2(F) because of the
decreased blurring in the former. These are thought to be due to the fact that the evanescent,
non-radiating part of the acoustic spectrum is neglected in the image reconstruction. It is clear
from figure 2(C) that there is some energy in the evanescent region of the spectrum of Pkl , e.g.
where k > (�ω/c�kx)l, which is lost when interpolating to P0kq , figure 2(E).

In section 3.3 and figure 4 it is explained that it is necessary that the reflectors are placed
a distance �x/2 from the first and last measurement points. When it is not possible for the
measurement aperture to extend over the full width of the base of the box, perhaps due to
the way the reflectors are fixed to the plane, or because only a sensor array smaller than the
box is available, it may still be advantageous to include the reflectors. Figure 8(B) shows an
image measured over an aperture which covers only three quarters of the distance between the
reflectors, as shown in figure 7. Comparing this to figure 8(A), which was generated using the
same set-up and reconstruction algorithm, but without the reverberation due to the reflectors,
it is clear that there is some advantage still to be had by including the reflectors. Whilst
there are artefacts in figure 8(B), the edges of many of the circles are recovered much more
satisfactorily. The reason that this is so can be understood using the concept of the ‘effective
measurement aperture’.
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Figure 7. The 3/4-width aperture used to reconstruct the images in figure 8.

x (mm)

z 
(m

m
)

(A)

−10 −5 0 5 10
0

2

4

6

8

10

12

14

16

18

20

x (mm)

z 
(m

m
)

(B)

−10 −5 0 5 10
0

2

4

6

8

10

12

14

16

18

20

Figure 8. Images reconstructed using the data from a 3/4-width aperture (figure 7), (A) without
reflectors, (B) with reflectors.

4. Effective measurement aperture

Many imaging targets of interest will contain sharp boundaries delimiting regions of different
contrast, such as is the case with the circles in figure 2(A) or, for instance, blood vessels in
tissue. In order to reconstruct the shapes of these regions accurately, the imaging scheme must
be able to reconstruct the boundaries—i.e., where the contrast changes rapidly over a short
distance. The Louis–Quinto theorem, a result from microlocal analysis of the spherical mean
Radon transform due to Louis and Quinto [7], but quoted here from Anastasio and Zhang [47],
states:

A boundary located at position x can be reconstructed stably if and only if one of the
two normal directions to the boundary at x intersects the measurement surface.

A boundary that can, in principle, be reconstructed stably i.e., accurately without blurring, is
called ‘visible’. The accuracy with which a visible boundary is actually reconstructed depends
on the particular reconstruction algorithm used. Boundaries that cannot be reconstructed stably
even in principle are called ‘invisible’, and usually appear smoothed. This result highlights
a problem with finite width planar apertures. For an infinitely wide planar aperture, where a
normal to every conceivable boundary must cross the measurement surface somewhere, all
the boundaries in the image can be stably reconstructed, but using data from an array with
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Figure 9. The effective aperture width Xeff is governed by the time over which the reverberation
is recorded t, rather than the actual width X of the detector. It is also dependent on the height of
the source z above the detector plane.

a finite-aperture means that some of the boundaries cannot be reconstructed. However, it is
clear, by comparing figures 2(F) and 5(D), that by including the reflectors, the boundaries, i.e.
the edges of the circles, have been reconstructed more accurately. This is so even though the
side walls are not per se part of the measurement array, which consists of just the planar
surface perpendicular to, and between, the reflectors. Adding the reflectors appears to increase
the width of the measurement aperture in some sense, thus allowing the boundaries to be
reconstructed more accurately. In this section, an intuitive definition of ‘effective measurement
aperture’ is proposed and whether or not it acts as a measurement surface in the sense of the
Louis–Quinto theorem is investigated.

The ‘effective measurement aperture’, or simply ‘effective aperture’, is defined for a
point at (x, z) as the region in the plane z = 0 for which the distance from (x, z) to the
plane is less than or equal to cT , as shown in figure 9, where T is the duration of the
measurements. Some simple trigonometry shows that the ‘effective’ aperture width is given
by Xeff = 2

√
(cT )2 − z2. This expression for the effective aperture width shows that for

z � cT , doubling the length of time over which the reverberation is recorded doubles the
effective aperture. Also, the angle θ subtended by an actual aperture of width X at a height
z is given by tan(θ/2) = X/(2z), whereas the angle θeff subtended by the effective aperture is
given by tan(θeff/2) =

√
(cT /z)2 − 1.

To show that the ‘effective measurement aperture’ acts as a measurement surface in the
Louis–Quinto sense, it is necessary to determine that when the normal to a boundary at a point
x0 crosses the ‘effective measurement aperture’—even if not the actual sensing area—the
boundary at x0 is stably reconstructed. |∇hnp|, the magnitude of the discrete gradient, is used
as an indicator of how well the boundaries in the image have been reconstructed. Figure 10
shows a plot of the magnitude of the gradient of figure 5(B), which was reconstructed from
measurements made over 14 µs. Superimposed on the plot are lines showing the angle
subtended by the effective measurement apertures, as illustrated in figure 9, for three of the
circles in the image. While there are no clear cut-off points between where a boundary is
well recovered and where it is poorly recovered, nevertheless, there is clearly good agreement
between those parts of the boundary that have been recovered with a large gradient, and
therefore stably, and those parts of the boundary whose normals lie in between the two lines
bounding the angle subtended by the effective measurement aperture. (This short-time-history
example was chosen so that the effective aperture was narrow enough to be displayed easily.
In addition, the boundaries in images figures 5(C) and (D) were so well recovered that the plot
of the gradient varied little from circle to circle.)

For comparison, figure 11 shows a plot of the magnitude of the gradient of figure 2(F) in
the case where the reverberant data are not included. Superimposed on this image are lines
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Figure 10. The magnitude of the gradient of the image shown in figure 5(B), reconstructed from
14 µs time histories, including the reverberation due to the reflectors. Radial lines marking out the
‘effective measurement aperture’ have been superimposed. The boundaries of the circles in the
image can be visibly reconstructed within the angle subtended by the effective aperture.

Figure 11. The magnitude of the gradient of the image shown in figure 2(F). Radial lines marking
out the angle subtended by the sensor have been superimposed. The boundaries of the circles in
the image can be visibly reconstructed within the angle subtended by the aperture.

showing the angles subtended by the actual measurement aperture. The boundaries that lie
within the angle defined by the actual measurement aperture are recovered stably, in agreement
with the Louis–Quinto theorem. It is also clear now why the image quality in figures 5(B)–(D)
does not depend on position in the same way as figure 2(F). Every point in figures 10 is in the
centre of its effective measurement aperture, whereas only the points on the line x = 0 are in
the centre of the actual measurement aperture in figure 11. The other points lie either one side
or the other of this line, leading to an asymmetry in the measurements and thus asymmetry in
the distortion of the image.
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5. Discussion

The main advantage of introducing image sources by using acoustic reflectors perpendicular
to the planar sensor—the improvement in the image quality due to the reduction of blurring
and artefacts—has been described above. In this section some of the other advantages,
practicalities, and applications of such a system are discussed.

One difference between planar imaging with and without reflectors, is that in the former
case the object to be imaged must fit between the reflectors. This still allows a wide range of
potential uses, including breast imaging, whole body imaging of small animals, and imaging
of ex vivo tissue samples. Monitoring the growth of engineered tissue and, perhaps, plant
morphology may also be possible.

5.1. Temporal versus spatial measurements

There are two related points here. The first is that small arrays are often preferable to large
arrays, due to reasons of technical complexity and cost. The second concerns the efficiency
of data storage. Consider a 2D detector array consisting of N × N equally spaced elements.
Doubling the aperture of this array in both directions will require a 2N ×2N array, a four-fold
increase in the number of individual elements. By using reflectors with the smaller array,
however, it has been shown that it is possible to achieve an effective aperture size similar to
the larger array simply by recording the reverberant data for twice as long. The increased
technical complexity of making measurements over a larger array, and the much greater cost,
can therefore be avoided. For measurements over a 2D surface, the number of data recorded is
N2 ×M , where M is the number of samples in time. It was noted in section 4 that doubling the
duration of the measurement, doubling M, is equivalent to doubling N when z � ct . Doubling
the measurement aperture in both dimensions leads to four times as much data, (2N)2 × M ,
but doubling the duration of the measurement gives only twice as much, N2 × (2M). For
high resolution images, which require a large number of sampling points, this saving of a
factor of two in the storage requirement may be beneficial. The reverberant-field data carry
the information on the source distribution more efficiently than the free-field data.

5.2. Point spread function deblurring

One way to improve an image such as figure 2(F) is to deblur the image using knowledge of
the point spread function (PSF) of the imaging system. The point spread function will consist
of two parts, one due to the nature of the detector and the other due to the finite measurement
aperture. The first part is often spatially invariant, but the effect of the finite aperture on the
PSF is to introduce considerable spatial variation. It is this variation that causes the spatially
dependent blurring in figure 2(F).

Imaging with image sources results in a PSF that is independent of x; recording over a
sufficiently long time duration also reduces the spatial dependence on z, resulting in a PSF
that is essentially spatially independent, as shown in figure 5(D). This is significant, for it
is considerably easier to deconvolve a spatially independent PSF from an image than it is to
deblur using a spatially dependent one.

5.3. Model assumptions

Several of the assumptions made in deriving the image reconstruction algorithm will be met
only approximately in practical implementations. In particular, the sound speed will never
be exactly uniform in tissue, acoustic absorption will attenuate the signal to some extent, and
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the reflectors will not be perfectly reflecting. Sound speed heterogeneities within the sample
will make the later-arriving reflections less useful in the image reconstruction than the early
arrivals, because of the accumulated phase distortion from having travelled a greater distance
through the heterogeneous sample. However, both the acoustic absorption and the less-than-
perfectly reflecting reflectors will dampen the reverberant signal so that it will fall into the
noise sooner than it would otherwise, and will therefore act to reduce the effect of these later
arrivals on the image. It was shown in figure 5 that even using just the first few reflections can
improve the resolution of the image considerably.

A model-based photoacoustic image reconstruction scheme that uses reverberant data
from an arbitrarily shaped reverberant cavity, and can take into account non-perfect reflectors,
sound speed heterogeneities, and so on, is conceivable but it would lack the simplicity and
efficiency of the method described here, and would not provide the same level of insight into
the reconstruction problem.

6. Conclusions

A technique for PAT without finite aperture effects has been described. Acoustic reflectors,
placed at either end of the finite aperture sensor and perpendicular to it, introduce acoustic
image sources which make the acoustic field spatially periodic. By exploiting the periodicity
inherently assumed by the discrete Fourier transform, an existing and efficient method for
reconstructing PAT images from planar measurements can be used to reconstruct images
exactly from the measured reverberant field. This technique allows the acoustic data emitted
over a solid angle approaching 2π steradians to be measured, whilst maintaining the planar
measurement geometry for which there exists an efficient reconstruction algorithm.

There are a number of benefits of this planar approach over circular, cylindrical and
spherical geometries: planar sensor arrays (including optically-addressed arrays) are readily
available, a large and therefore expensive array is not required for high resolution imaging, the
image reconstruction is exact and efficient, and the PSF of the sensor can be deconvolved
straightforwardly from these images, improving the image quality still further. These
advantages offer the prospect of rapidly acquired photoacoustic images with high, spatially
invariant resolution.
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