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1 Introduction
The prospect of a soft tissue imaging modality that can achieve
fine spatial resolution, high sensitivity, and good specificity has
led, in the last decade, to a rapid growth of interest in photo-
acoustic (PA) imaging.1–3 PA imaging shares one of the distinc-
tive advantages of other optical imaging techniques in that it
can be used spectroscopically; measurements made at multi-
ple optical wavelengths can be used to provide information
related to molecular composition. The goal of quantitative
PA imaging (QPAI) is to exploit this advantage by converting
multiwavelength sets of PA images into images showing quan-
titatively accurate estimates of the spatially varying concentra-
tions of chromophores (light-absorbing substances) embedded
within an optically scattering medium such as biological
tissue.

1.1 Scope of the Paper

The aims in writing this paper have been twofold: to describe the
challenges in QPAI, and to group the attempts that have been
made to tackle QPAI together with similar methods, or with
methods that make similar assumptions, in a coherent way
that highlights the similarities and differences. It has neither
been our intention to present a chronologically accurate history
of quantitative PAT, nor to provide a reference to every paper in
this area, but rather to give sufficient references to act as an
introduction to the literature.

1.1.1 What does “quantitative photoacoustic imaging”
cover?

There are a number of quantities that might be determined by
QPAI. The contrast in PA imaging is due to chromophores, and

the most fundamental quantity to be determined is their concen-
trations. Typical chromophores are (1) endogenous molecules
such as oxyhemoglobin or deoxyhemoglobin, melanin, lipids,
and water; (2) exogenous contrast agents, sometimes targeted
to a particular cell-surface receptor, biomolecule, or organ; and
(3) absorbing enzymes or other proteins resulting from the
expression of reporter genes linked to the expression of a
gene of interest. QPAI might also be used to obtain quantitative
estimates of parameters of physiological interest derived from
chromophore concentrations, such as blood oxygenation, the
spatially varying optical absorption coefficient (the sum of con-
tributions from all the chromophores), and the optical scattering
coefficient, which is related to the tissue microstructure. Which
of these is considered the primary quantity will depend on the
application.

1.1.2 What is not covered in this paper?

There are essentially two aspects to PA imaging: acoustic and
optical. The focus of this paper is on the optical inversion, and
the acoustic inverse problem (PA image reconstruction) is not
covered here. It has been studied extensively, and we refer
the interested reader to Refs. 4–10 and to the references con-
tained therein. This review does not discuss the recovery of
properties of the tissue other than optical properties (e.g.,
sound speed, density, and acoustic attenuation estimation)
although the accurate determination of these acoustic quantities
could have an indirect effect on QPAI if they are used to improve
the accuracy of the acoustic image reconstruction. A great deal
of work has been done in recent years on finding and designing
suitable contrast agents for PAI, but the focus here is on tech-
niques to facilitate the estimation of their concentrations rather
than on the chemistry of the substances themselves. Techniques
to determine the optimal choice of wavelengths for QPAI is out-
side the scope of this article as it will be very dependent on the
particular arrangement (the object, imaging mode, main source
of contrast, other chromophores present, etc.). This question has
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been tackled for some specific scenarios.11–13 Finally, photo-
acoustic techniques that have no imaging aspect are not covered
here, so “gas phase” PA spectroscopy using a PA cell, which is a
mature field in its own right,14 is not described.

1.1.3 Layout of the paper

The layout of the paper is as follows: Sec. 1.2 gives a brief
introduction to PA imaging in general; Sec. 2.1 introduces
the quantitative inverse problem; and Secs. 2.2 and 2.3 describe
models of light transport and, in broad terms, how they might be
used in inversions for estimating optical properties. The later
sections discuss the specifics of methods that have been
proposed assuming, respectively, that the situation is one-
dimensional (Sec. 3), that optical properties can be obtained
from acoustic measurements made with a single detector rather
than an array (Sec. 4), and that the situation is fully three-
dimensional (Sec. 5). A discussion, including PA efficiency,
and a summary conclude the paper.

1.2 Photoacoustic Imaging

This section will start with a brief description of the photoacous-
tic effect: how PAwaves are generated. The term photoacoustic
imaging is used to describe a number of related imaging modes
that exploit this effect to image objects with heterogeneous opti-
cal absorption. As these PA images are a prerequisite for QPAI,
Secs. 1.2.2 and 1.2.3 give very short summaries of the main
imaging modalities currently in use.

1.2.1 The photoacoustic effect

There are several mechanisms by which light can be used to
generate sound waves.15–17 PA imaging usually uses light in the
non-ionizing visible or near-infrared (NIR) parts of the spectrum
because the NIR “window” (a range of wavelengths over which
both water absorption and tissue scattering are low) permits
deeper light penetration and so greater imaging depth. For
these wavelength ranges, and for light intensities below expo-
sure safety limits, heat deposition is the dominant mechanism
for the generation of acoustic pulses. The photoacoustic effect,
as the term will be used here, therefore refers to the generation of
sound waves through the absorption of light and conversion
to heat.

Three steps are involved in the PA effect: (1) the absorption
of a photon, (2) the thermalization of the absorbed energy and a
corresponding localized pressure increase, and (3) the propaga-
tion of this pressure perturbation as an acoustic wave due to the
elastic nature of tissue. The absorption of a photon, which typi-
cally takes place on a femtosecond timescale, raises a molecule
to an excited state. There are then a number of possible subse-
quent chains of events for photons in the visible and NIR. The
two most important of these are radiative decay and thermaliza-
tion. In PA applications it is usually assumed that thermalization
(nonradiative decay) dominates and that therefore all the photon
energy is converted into heat via vibrational∕collisional relaxa-
tion on a sub-nanosecond timescale. This localized injection of
heat will lead to a small rise in the local temperature and a
related rise in the local pressure, p0. If the heat per unit volume
deposited in the tissue (the absorbed energy density) is written
as H and the usual assumption is made that the pressure rise is
linearly related to the absorbed energy, the pressure increase
may be written as

p0 ¼ Γ̂H; (1)

where Γ̂ is the PA efficiency. (This efficiency can be identified
with the Grüneisen parameter Γ for an absorbing fluid; Sec. 6.3).
It is this increase in pressure that subsequently becomes a
propagating acoustic (ultrasonic) wave, because of the elastic
nature of tissue. It is therefore referred to as the initial acoustic
pressure distribution, p0. The absorbed energy density can be
written as

H ¼ μaΦ; (2)

where μa is the optical absorption coefficient (the total absorp-
tion due to the chromophores) and Φ is the light fluence (the
radiance integrated over all directions and time; Sec. 2.2). The
initial acoustic pressure distribution may therefore be written as
the product of three quantities:

p0 ¼ Γ̂μaΦ: (3)

The direct problem, from absorber (endogenous chromo-
phore or contrast agent) to measured PA signal, is presented
schematically in Fig. 1. It can be separated into two parts: optical
propagation leading to a fluence distribution, and acoustic pro-
pagation leading to the detected ultrasonic pulse, coupled by the
thermalization of the light energy.

1.2.2 Photoacoustic tomography

PA tomography (PAT), sometimes called PA computed tomog-
raphy, uses a widefield pulse of light to illuminate the tissue
so that the whole tissue is flooded with light.18 An array of
(ideally) omnidirectional point ultrasound detectors (or an array
synthesized from many single-point measurements) is used to
record the resulting PA waves. For the highest quality images,
the array should enclose the object being imaged, although in
practice good images are attainable when this is not the case
(when a planar detection surface is used, for instance). An
image reconstruction algorithm is used to reconstruct the initial
acoustic pressure distribution from the recorded pressure time
series.4–10 This estimate of the initial acoustic pressure distribu-
tion is called a PAT image. It is inherently three dimensional.
The spatial resolution is limited by the detector aperture used to
measure the data, by the directionality and spacing of the detec-
tor elements, and by the maximum acoustic frequency detected.
Spatial resolution is therefore higher closer to the detector
because acoustic absorption (which absorbs the higher frequen-
cies more) removes the higher frequencies for signals arriving
from further away. Images with spatial resolutions of a few tens
of microns for sub-centimeter depths, extending to resolutions
of a millimeter or so at several centimeters, can readily be
achieved. Variations on this theme include the use of integrating
detectors in place of point receivers,19 and of detectors focused
in a plane,20 both of which reduce the image reconstruction
problem to two dimensions.

1.2.3 Photoacoustic scanning microscopy

In photoacoustic scanning microscopy (PAM) an ultrasonic
detector is scanned over the sample and the A-lines (the PA
time series) recorded at each scan point, which approximate
depth profiles through the initial pressure distribution, are
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stacked up to form a three-dimensional (3-D) image. This
requires no image reconstruction algorithm, in contrast to
PAT. There are essentially two modes of PA microscopy,
AR-PAM and OR-PAM. In acoustic resolution PA microscopy
(AR-PAM), a focused ultrasound detector is used to record the
PA signal, and the axial and lateral spatial resolutions are limited
by ultrasonic considerations. In a typical implementation, the
transducer is focused tightly to minimize the lateral resolution,
and the tissue is illuminated by a ring of light sent around the
transducer and weakly focused to the same point. For a high
resolution system, the lateral spatial resolution is ∼45 μm to
a depth of a few millimeters, with the vertical resolution limited
to half the shortest wavelength detectable (∼15 μm).21 To
improve the lateral spatial resolution to beyond the acoustic

diffraction limit, optical resolution PA microscopy (OR-PAM)
uses very tightly focused light to limit the illuminated region
to a very small spot. As a tight focal spot can only be formed
close to where the light enters the tissue (at deeper depths the
scattering makes focusing very difficult) and as the PA signal is
only generated in the illuminated region, OR-PAM is typically
used for visualizing chromophores within the first 1 mm or so
of tissue only. Sub-micron lateral resolutions and vertical reso-
lutions limited to ∼10 μm should be achievable.22

2 Quantitative Photoacoustic Imaging

2.1 Optical Inverse Problem

This section introduces the inverse problem that must be solved
for quantitative PAI to be achieved. It is essentially the inversion
of a light transport operator, hence it is called the optical inverse
problem.

2.1.1 Formulation of the problem

A set of PA images p0ðx; λÞ are obtained experimentally, each at
a different optical wavelength λ. (The position vector x will in
general be in three dimensions although it can be reduced to one
or two under certain conditions.) If the system is calibrated and
the PA efficiency is known, then the multiwavelength set of
images of absorbed energy density Hðx; λÞ ¼ Γ̂ −1p0ðx; λÞ can
be taken as the measured data. The principal optical inversion
in QPAI is a distributed parameter estimation problem that can
then be stated as follows: find the concentrations CkðxÞ of K
chromophores with known molar absorption coefficient spectra
αkðλÞ, given the absorbed energy images Hðx; λÞ when the
chromophores are linked to the absorption coefficients with
the linear mapping Lλ:

μaðx; λÞ ¼ LλðCkÞ ¼
XK
k¼1

CkðxÞαkðλÞ; (4)

and the absorption coefficients are linked to the absorbed energy
images by the nonlinear mapping T :

Hðx; λÞ ¼ Tðμa; μsÞ ¼ μaðx; λÞΦðx; λ; μa; μsÞ: (5)

The light fluence, Φðx; λÞ is unknown and will depend on μa
as well as the optical scattering coefficient μs. A fluence model
is therefore required (Sec. 2.2). Equations (4) and (5) can be
combined to give

Hðx; λÞ ¼ TλðCk; μsÞ ¼ Φðx; λ;Ck; μsÞ
XK
k¼1

CkðxÞαkðλÞ:

(6)

Equations (4) and (5) suggest a two-stage inversion strategy:
first recover the absorption coefficients μa ¼ T−1ðHÞ and then
find the concentrations Ck ¼ L−1λ ðμaÞ, whereas Eq. (6) suggests
a single inversion, Ck ¼ T−1

λ ðHÞ. The former approach, of find-
ing the absorption coefficients first, has been studied more than
the latter, although there are potential advantages in both cases
(see Sec. 6.1). No hard separation will be made between these
two approaches in this paper, and wherever the absorption
coefficient is treated as the unknown, it should be taken as read
that a spectroscopic inversion would follow the recovery of the

Fig. 1 PA signal generation. Spatially varying chromophore concentra-
tions (naturally occurring or contrast agents) give rise to optical absorp-
tion in the medium. The absorption and scattering coefficients, μa and
μs, determine the fluence distribution Φ (how the light from a source
becomes distributed in the tissue), and hence the absorbed energy dis-
tributionH. This energy generates a pressure distribution p0 via therma-
lization, which because of the elastic nature of tissue then propagates
as an acoustic wave. The resulting pulse is detected by a sensor resulting
in the measured PA time series pðtÞ.
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absorption coefficients. These two pathways are shown schema-
tically in Fig. 2, which also shows a third approach: to combine
the acoustic and optical inversions and invert directly for the
chromophore concentrations from the pressure time series,
pðtÞ, that is, directly invert the mapping W given by

pðtÞ ¼ AΓ̂TλðCkÞ ¼ WðCkÞ; (7)

where A is the acoustic forward operator. Linearizations of W
have been found useful in certain very specific circumstances
(see Sec. 4), but in general the nonlinearity of the light
transport∕absorption model must be taken into account.

For OR-PAM images obtained by scanning the focused illu-
mination spot across the region of interest, the fluence distribu-
tion ΦðxÞ will be different for each measurement, so Eq. (5)
should be replaced by HðxiÞ ¼ μaðxiÞΦi½xi; μaðxÞ� where ΦiðxÞ
is the fluence distribution at point x when the illumination is
focused at the point xi. Full field inversions (Sec. 5) are not
usually applied to OR-PAM images, but if they were, this detail
would need to be considered.

2.1.2 Spectral coloring and structural distortion

A cursory glance at Eq. (6) might suggest that there is a linear
relationship between the chromophore concentrations Ck and
the absorbed energy density H. If this were the case, then it
would allow the chromophore concentrations Ck to be recovered
from measurements of the absorbed energy density spectra HðλÞ
straightforwardly, for example, using a linear matrix inversion.
Unfortunately the unknown fluence Φ depends in a nontrivial
way on the chromophore concentrations because Tλ is both non-
linear and nonlocal (H at one point can be affected by μa some
distance away via its effect on the fluence). It is not reasonable,
therefore, to assume that HðλÞ ∝ μaðλÞ because the spectrum of
the absorbed energy density at a given point will be affected
by the fluence, which will have been colored by its passage
through the medium. Because biological tissue is highly scatter-
ing, each photon will take a long and convoluted path through
the tissue. The spectra of the fluence and the absorption are
therefore intertwined, and HðλÞ will be a complicated combina-
tion of the absorption spectra of the constituent chromophores at
each point in the irradiated volume. (This coloring of the spec-
trum is the same effect as when seeing the world through
colored glass.)

As the fluence Φðx; λÞ is a function of position as well as
wavelength, it will also have another effect. As well as coloring
the spectrum, it will also distort the image structure. The
absorbed energy density at a single wavelength is given by
Eq. (2) or (4): HðxÞ ¼ μaðxÞΦðxÞ. The unknown and nonuni-
form light distribution ΦðxÞ will therefore distort what
would, in its absence, have been an image proportional to μaðxÞ,
the absorption coefficient as a function of position. This cannot
be avoided by ensuring that the illumination of the target is uni-
form at the surface, because as soon as there is any absorption or
scattering in the medium, the fluence will vary spatially. When
the absorption or scattering is spatially varying (as is often the
case in tissue), the unknown fluence also will be. This structural
distortion and the spectral coloring are two manifestations of
the same phenomenon, namely the effect of the fluence on
the PA image.23

2.1.3 Using a model to recover the concentrations

The measured PA signals pðtÞ or images p0 can be related to the
chromophore concentrations Ck by the use of analytical or
numerical models to approximate the physics encapsulated by
the operators Tλ, T , orW, which can then be inverted to estimate
Ck. Potential models will vary in their accuracy (how much of
the physics they model), their range of validity (over what values
of the known parameters and the concentrations they are valid),
their complexity (how easy they are to solve) and their invert-
ibility (how easily they can be inverted—reverse engineered—to
calculate the concentrations given the measured data). For the
model to be useful, it must strike a balance between accuracy
(including range of validity) and simplicity (including invertibil-
ity). The two main models that have been used to describe light
are summarized below.

2.2 Fluence Models

The essential difficulty with QPAI is the unknown light fluence.
Inverting Tλ or T to obtain μa or Ck would be trivial if the flu-
ence were known, but in general it is not and so must be mod-
eled. In some situations it may be possible to approximate the

Fig. 2 The inverse problems in quantitative PA imaging. Solid lines
indicate linear operators and dot-dash lines those that are inherently
nonlinear. The acoustic pressure time series pðtÞ are the measured data,
and the chromophore concentrations Ck are the unknowns. The con-
centrations may be obtained step by step: linear acoustic inversion, A−1;
thermoelastic scaling, Γ̂−1; nonlinear optical inversion for the optical
coefficients,T−1; and finally ,L−1λ a linear spectroscopic inversion of
the absorption coefficient spectra to recover the chromophore concen-
trations. Alternatively, these last two stages may be combined into the
operator T−1

λ . A different approach is to attempt a one-step inversion of
the whole process, W−1. This may be linearized under specific and
rather restricted conditions. The inverse light transport operators T−1

and its multiwavelength equivalent T−1
λ are at the core of the methods

described in this paper.
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fluence distribution with an analytical expression or a simple
formulation, for example, in a homogeneous or nonscattering
medium. In the more general case, a numerical model of light
propagation through the tissue is required. A number of numer-
ical and mathematical models are relevant to light propagation in
scattering media, and there is a considerable literature.24–27 The
requirements for a model are that it is sufficiently accurate to
capture the essential characteristics of the light field, and per-
haps, fast enough computationally to make its use in iterative
inversion methods possible, where it may need to be evaluated
many times. Two widely used light models are described briefly.

2.2.1 Radiative transfer equation

Light is an electromagnetic wave satisfying Maxwell’s equa-
tions but treating it as such for propagation in turbid (highly
scattering) media quickly reaches the limits of practical compu-
tation because of the spatial scales involved. It is more common,
therefore, to use particle-based methods from transport theory to
model the light distribution. The radiative transfer equation
(which is Boltzmann’s transport equation applied to low energy,
monochromatic, photons) is an integro-differential equation
expressing the conservation of energy in the following form:

1

c
∂ϕ
∂t

ðx; ŝ; tÞ ¼ qðx; ŝ; tÞ − ½ŝ · ∇þ μaðxÞ þ μsðxÞ�ϕðx; ŝ; tÞ

þ μs

Z
Θðŝ; ŝ 0Þϕðx; ŝ 0; tÞdŝ 0; (8)

where ϕðx; ŝ; tÞ is the light radiance, Θðŝ; ŝ 0Þ is called the scat-
tering phase function and is the probability that a photon origin-
ally traveling in direction ŝ ends up traveling in direction ŝ 0 if
scattered, qðx; ŝ; tÞ is a source of photons, and c is the speed of
light in the medium. The terms on the right-hand side of this
equation account for the fact that the rate of change of the num-
ber of photons within a small region around the point x and
traveling in direction ŝ could be due to (1) sources q; (2) net
outflow of photons due to the radiance gradient, ŝ · ∇;
(3) photons absorbed, μaϕ; (4) photons scattered into another
direction, μsϕ; or (5) photons scattered into direction ŝ from
another direction (given by the phase integral). Wave effects,
polarization, radiative processes, ionization, inelastic scattering,
and reactions are all neglected in this model.

Because in pulsed PA imaging the acoustic propagation occurs
on a timescale several orders of magnitude longer than the heat
deposition, the time-integrated absorbed power density (i.e., the
absorbed energy density) is the quantity of interest, so only the
time-independent radiative transfer equation (RTE) is required.

ðŝ · ∇þ μtÞϕðx; ŝÞ − μs

Z
Θðŝ; ŝ 0Þϕðx; ŝ 0Þdŝ 0 ¼ qðx; ŝÞ;

(9)

where the total attenuation coefficient μt ¼ μa þ μs, and ϕðx; ŝÞ
is now used to represent the time-integrated light radiance. The
fluence Φ is the integral of the radiance over all angles ŝ:

ΦðxÞ ¼
Z

ϕðx; ŝ 0Þdŝ 0: (10)

To solve Eq. (9) computationally, it may, for example, be
written in a weak formulation and implemented on a discretized
mesh using the finite element method.28,29

When there is no scattering, Eq. (9) reduces to
ðŝ · ∇þ μaÞϕ ¼ q. In the case of a collimated source propagat-
ing in the z direction, the fluence, which equals the radiance as
there is only one direction of propagation, satisfies the equation
∂Φ∕∂z ¼ −μaΦ. If the source illuminates the surface with a flu-
ence of Φ0 and μa is constant, then the fluence as a function of
depth may be written

ΦðzÞ ¼ Φ0 expð−μazÞ; (11)

which is known as Beer’s law or the Beer-Lambert-
Bouguer law.

2.2.2 Diffusion approximation

To obtain approximations to the RTE, the radiance can be
written as a sum of spherical harmonics and truncated after
N terms. This leads to a family of approximations known as
the PN approximations. When the directional dependence of
the light distribution is weak, as within highly scattering tissue,
it is often sufficient to take N ¼ 1. The time-independent P1

approximation can be written as the two equations30

μaΦþ ∇ · F ¼ q0;
F
D
þ ∇Φ ¼ 3 q1; (12)

where D ¼ ½3ðμa þ μ 0
sÞ�−1 is the optical diffusion coefficient,

μ 0
s ¼ ð1 − gÞμs is the reduced scattering coefficient (with g

the anisotropy factor), and the vector flux, F, is defined as

FðxÞ ¼
Z

ϕðx; ŝ 0Þŝ 0dŝ 0: (13)

The isotropic and mildly directional source terms qo and q1
are defined analogously to Eqs. (10) and (13). When q1 ¼ 0,
Eqs. (12) and (13) reduce to the diffusion approximation
(DA):

μaΦ − ∇ · ðD∇ÞΦ ¼ q0: (14)

The condition μ 0
s ≫ μa is usually considered sufficient to

ensure the accuracy of the diffusion approximation away from
sources, because it ensures the scattered fluence is almost isotro-
pic. For arbitrary heterogeneous media, Eq. (14) may be solved
by standard numerical methods such as finite elements.31,32 For
a homogeneous medium, the solution to Eq. (14) is given by

ΦðxÞ ¼
Z

G0ðx − x 0Þq0ðx 0Þdx 0 (15)

with the (3-D) free space Green’s function, G0 [the solution to
ðμa − D∇2ÞG0 ¼ δðx − x 0Þ] given by

G0ðx; x 0Þ ¼ expð−μeff jx − x 0jÞ
4πDjx − x 0j ;

μeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3μaðμa þ μ 0

sÞ
p

; (16)

where μeff is called the effective attenuation coefficient. This
solution will be used in some of the inversions in Sec. 5. In
one dimension (1-D), the solution is ΦðzÞ ¼ Φ0 expð−μeffzÞ
where Φ0 is fluence incident on the surface, which is analogous
to Eq. (11). Some care is required here because while this is the
solution to Eq. (14) in 1-D, it only applies when the fluence
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everywhere is diffuse, which is rarely true close to the surface;
where light enters the tissue, it often remains partially collimated.
In practice, the fluence will often reach a peak at some distance
beneath the surface, where both the incident and backscattered
light are contributing to the fluence, before decaying exponen-
tially. Introducing a scaling factor to account for this gives

ΦðzÞ ≈ kΦ0 expð−μeff zÞ for z ≫
1

μt
; (17)

which is used in the inversions in Sec. 3.3.

2.2.3 Collimated source, δ-Eddington approximation

For a collimated incident beam, the condition for the accuracy of
the DA, μ 0

s ≫ μa, must be supplemented with a second condi-
tion. As the collimated part of an incident beam will decay expo-
nentially with depth z as expð−μtzÞ, the fluence will only be
dominated by diffuse photons at depths z ≫ 1∕μt. The optical
coefficients in PA imaging applications are of the order of
μa ¼ 0.1 mm−1, μs ¼ 10 mm−1, g ¼ 0.9, μ 0

s ¼ 1 mm−1 so the
condition that μ 0

s ≫ μa is met, but the condition that the fluence
is dominated by diffuse photons, only holds for distances
z ≫ 1∕μt ≈ 0.1 mm, so perhaps for z > 1 mm or so. This
sub-millimeter surface region is often of interest in PA imaging,
so it is important that the light model is accurate there. This
could be achieved by using the RTE or a higher order PN
approximation, but the simplicity of the DA is appealing.
The δ-Eddington approximation attempts to provide a more
accurate model of the light fluence in this surface region without
losing the simple form of the DA.33–35

2.2.4 Monte Carlo models

As an alternative to analytical models, the Monte Carlo method
is a purely numerical approach. It simulates the random walk
taken by “packets of energy” as they propagate one by one
through the scattering medium, losing energy as they go and
being scattered according to the probability as given by the
phase function Θ.36,37 A large number of packets are required
for the absorbed energy density to converge to a continuous
solution, but because the path of every packet is independent,
these methods are straightforwardly parallelizable. As the avail-
ability of large computing clusters and clusters of graphical pro-
cessing units (GPUs) is increasing quickly, implementations are
becoming significantly faster.38 Monte Carlo methods are often
considered the “gold standard” for modeling light transport in
turbid media and are frequently used to validate other numerical
models.

2.3 Parameter Estimation

The estimation of the values of the parameters of a model (e.g.,
the coefficients in an equation) from measurements assumed to
correspond to its solution is a problem that occurs in many
fields. It has therefore has been widely studied, both for param-
eters that are single scalars as well as for distributed parameters.
The aim in QPAI is to recover chromophore concentrations
(or absorption coefficients) as a function of position, and so
it is a distributed parameter estimation problem. This section
gives a brief overview of a few of these methods that have
been applied to quantitative PAI.

2.3.1 Inversion techniques

Linearization. Any linear model can be written in matrix
form, which allows the full repertoire of matrix inversion rou-
tines to be applied to the problem. A popular approach with
nonlinear problems such as QPAI is therefore linearization: to
linearize them with respect to the unknown parameters, for
example, to expand them as a Taylor series about a known
state (known background absorption and scattering for
instance). When the unknown parameters vary little from these
chosen values, then the linearized model is often a good approx-
imation. For example, it might be argued that a small localized
change in absorption will not change the fluence. Linearizations
of the QPAI problem are discussed in Secs. 4.1.1, 5.1.1, 5.1.2,
and 5.2.1 but are typically applicable only in very limited cir-
cumstances, such as for small perturbations of the unknowns.

Direct inversion. For light models that are available in ana-
lytical form rather than purely numerically, it might be possible to
rearrange the equations in such a way as to find a closed form
expression for unknown parameters in terms of the measured
data, or a simple noniterative procedure for determining them.
A simple example is Beer’s law, Eq. (11), which can be inverted
straightforwardly to give an expression for the absorption coeffi-
cient: μa ¼ − ln½ΦðzÞ∕Φ0�∕z. There is no systematic way for
finding direct inversions such as this, as each will be specific
to the problem under study. They are of great interest both
because of the insight into the inverse problem they provide,
and because—without the need for matrix inversions or
iterations—they can be fast. A direct method proposed for
QPAI is described in Sec. 5.2.2. As with any inversion technique,
a direct inversion needs to be stable and robust to noise in order to
be useful.

Fixed-point iteration. When the model equations can be
rewritten into a form such that the unknown parameter equals
a known function of itself, it may be possible to use a fixed-
point iteration to find it, for example, Eq. (5) can be rearranged
with μa on one side and H∕½ΦðμaÞ� on the other. Fixed-point
iterations typically converge quickly to the correct solution if
they converge at all. This is applied to QPAI in Sec. 5.1.3 in
the case where the scattering is known.

Model-based minimization. A very general approach that
does not require the model to be known analytically is to
find the unknowns by solving the forward problem iteratively,
updating the unknowns at each iteration, until the output of the
solver matches the measured data in some sense. This type of
scheme occurs in many guises which differ both in the way that
the solver output and the measured data are compared (the error
functional) and in the way in which the unknown parameters are
updated (the minimization algorithm). A popular and powerful
subset of these methods are least-squares approaches that have
been applied to QPAI and are described below.

2.3.2 Least-squares minimization

Least-squares minimization is a common and well-developed
framework for solving inverse problems. If the data is a
measured (observed) absorbed energy distribution, Hobs, then
the squared error between it and the output of a forward
model, HmodelðCkÞ, is kHmodelðCkÞ − Hobsk2 ¼ P

i½Hmodel
i ðCkÞ

−Hobs
i �2, where the subscript i indicates the value at the i’th
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voxel. The aim in least-squares minimization is to minimize the
error functional, ε, by adjusting the unknowns Ck:

argmin
Ck

ε ¼ 1

2
kHmodelðCkÞ − Hobsk2 þ PðCkÞ: (18)

The second term, P, is a penalty term that can be used to
include regularization or other constraints. Even when ε has
a well-defined minimum in the noise-free case, where the dif-
ference between Hmodel and Hobs is small, the noise in the data
may mean there may be several solutions, Hmodel, that fit the
measured data, Hobs, equally well. Regularization is a general
term to describe methods for ameliorating this problem, and com-
mon approaches are to encourage the unknowns—the absorption
or scattering coefficients, say—to be smooth (Tikhonov) or pie-
cewise constant (total variation). The latter may be reasonable in
some cases from physiological considerations; for example,
when imaging a plane through a blood vessel, the absorption
coefficient may take one value inside the vessel and one outside.
Other prior knowledge of some aspect of the unknowns, or
perhaps of an intermediate quantity, such as shape or an empiri-
cally determined maximum or minimum, may also be included in
this way. The basic idea is to reduce the solution space by
excluding functions with certain properties, such as those that
are insufficiently smooth, from being considered as solutions.

Solving Eq. (18) means finding the minimum of the scalar
functional ε. Gradient-based methods use the functional gradient
(the vector of first derivatives), gi ¼ ∂ε∕∂Ck;i, such as the conju-
gate-gradient method, to step down the function until a minimum
is reached. Hessian-based methods such as Newton’s method try
to reduce thenumberof iterationsby alsousing theHessianmatrix
of second derivatives,Hij ¼ ∂2ε∕ð∂Ck;i∂Ck;jÞ (related to the cur-
vature of the function). Some methods approximate the Hessian
matrix to ameliorate the burden of calculating it explicitly. For
example, the Gauss–Newton method uses the Jacobian matrix
Jij ¼ ∂Hmodel

i ∕∂Ck;j to estimate the Hessian matrix as H ≈ JTJ,
which can be implemented with Krylov methods that require
only matrix-vector products to be computed.39 Quasi-Newton
methods such as L-BFGS estimate the Hessian matrix at each
iteration by using stored values of the gradient. Gradient-free
methods, such as the Nelder-Mead simplex method, use neither
gradient nor Hessian information, so they tend to be slow to con-
verge. These approaches are applied to QPAI in Secs. 5.1.5 and
5.2.3 to 5.2.5. It should be noted that the literature on all aspects of
least-squares minimization (or optimization) is substantial.40,41

2.3.3 Uniqueness and ill-posedness

Estimating the chromophore concentrations Ck by minimizing
the functional in Eq. (18) is not as straightforward as it might at
first seem. The principal reason is that when the scattering is
unknown, and therefore needs to be estimated at the same time
as the concentrations, the functional ε may not have one unique
minimum. Consider the absorbed energy density, H, at a single
wavelength. An increase in the absorption coefficient at one
point will increase the number of photons that are absorbed
there, which will have the effect of reducing the fluence nearby.
The fluence can also be altered by changing the optical scatter-
ing, so a situation may arise in which a change in the scattering
occurs such that the resulting change in the fluence counteracts
exactly the effect of the absorption increase on H. In other
words, when the scattering and absorption coefficients are
both allowed to vary spatially, H may not depend uniquely on
the optical parameters: two different absorption and scattering

distributions could lead to the same H. As far as the optical
inversion is concerned, this is a severe problem because it
means there is no unique solution to the question “Which optical
coefficients would result in the measured H?” To solve the
inversion it is essential that this nonuniqueness be removed.
This can be done in a number of different ways: for example,
by fixing the scattering (Sec. 5.1), although this can clearly lead
to bias if the scattering is not known accurately; by using knowl-
edge of the scattering (and chromophores’) wavelength depen-
dence;42,43 or by using multiple measurements made with
different surface illumination patterns.44,45

A less severe form of ill-posedness is caused by the diffusive
nature of the optical propagation, which tends to smear out sharp
features in the fluence. This means that high spatial frequencies
in the distributions of the optical properties have limited influ-
ence on the fluence distribution. In PA, because it is the
absorbed energy density H rather than the fluence directly that
gives rise to the PA signals, the high frequencies (e.g., sharp
edges) in the absorption coefficient distribution do have a sig-
nificant influence on the measured data. However, the scattering
coefficient only affects H through its impact on the fluence so
has a second-order effect on H, which decreases as the spatial
frequency increases. This is equivalent to saying that the opera-
tors T and Tλ act as low pass filters to reduce the amplitudes of
the high frequency components of the scattering distribution,
and consequently the effect of the inverse operations, T−1,
T−1
λ , will be to grow the high frequency components. This will

have the effect of amplifying the noise in the measured data
which, unchecked, may come to dominate the inversion. Altera-
tions to the inverse operator that are designed to reduce this
unwanted effect are termed regularization (as mentioned in
the context of penalty functionals in Sec. 2.3.2 above). This
type of phenomenon is common to many inverse problems,
both linear and nonlinear, and a large number of regularization
techniques are described in the literature.46

2.3.4 Large-scale inversions and domain parameterization

A practical difficulty can arise when attempting the QPAI inver-
sion on 3-D PA images. When considering the general problem
of recovering the spatially varying chromophore concentrations,
the value of each chromophore in each image voxel could be
treated as a separate unknown. As a 3-D PAT image may consist
of 107 or more voxels, there may be of the order of 108

unknowns. This constitutes a large-scale inverse problem and
poses some practical difficulties. For example, a Hessian-
based inversion would need to compute, store, and invert a
Hessian matrix with perhaps 1016 elements on each iteration,
which is currently impractical. Clearly, techniques to reduce
the size of the problem and inversion procedures that are com-
putationally light47,48 are required. One way to reduce the num-
ber of unknowns is to divide the domain into a few regions on
which the optical coefficients are assumed constant. For exam-
ple, if the regions are denoted An, then the absorption coefficient
can be written as the sum

μaðxÞ ¼
X
n

μa;n SnðxÞ; SnðxÞ ¼
�
1; x ∈ An

0; otherwise
:

(19)

The concentrations and scattering coefficient can similarly be
separated into piecewise constant regions. Such a parameteriza-
tion has two advantages: it reduces the number of unknowns to a
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manageable number, and it can act to regularize the inversion.
The regions An may either be chosen based on some prior infor-
mation about the underlying tissue structure, or a multigrid
approach may be used, in which the regions are initially
large and are iteratively reduced.

3 One-Dimensional Quantitative Photoacoustic
Imaging

One of the areas of research that fed into and helped generate the
interest in PA imaging was the work done in the late 20th cen-
tury on PA depth-profiling. Much of this literature is concerned
with estimating the absorption coefficient of the material under
study, sometimes as a function of depth, sometimes in a scatter-
ing medium, and sometimes at multiple wavelengths, so several
of the key issues that arise in quantitative PA imaging in higher
dimensions appear in the 1-D context. As well as the possibility
of gleaning insight into the higher-dimensional versions of these
problems, another reason for reviewing attempts on the 1-D pro-
blem is that under some circumstances, real situations can be
modeled as 1-D or quasi-1-D, in particular in certain PA micro-
scopy applications.

3.1 Homogeneous Nonscattering Medium:
Beer’s Law

The simplest situation is a homogeneous, nonscattering, opti-
cally absorbing medium that is illuminated (with a short pulse)
by an infinitely wide beam of light. The absorbed energy density
under such conditions can, following the Beer’s law, Eq. (11), be
written simply as

HðzÞ ¼
�
μaΦ0 expð−μazÞ; z ≥ 0

0; z < 0
; (20)

where Φ0 is the fluence at the illuminated surface of the tissue,
which is assumed, without loss of generalization, to be at z ¼ 0.
This initial pressure will give rise to two PA waves, traveling
in the þz and −z directions, each with half the amplitude
but retaining the exponential shape. For a pressure detector at
z ¼ 0 (backward mode detection), then the signal reaching
the detector will be simply

pðtÞ ¼
�
Γ̂Φ0μa

2

�
expð−μac0tÞ; t ≥ 0; (21)

where c0 is the sound speed. (We are ignoring acoustic reflec-
tions at the surface here, but they can be straightforwardly
included.) The absorption coefficient, μa, can be estimated
either from the maximum amplitude of the signal, if the PA effi-
ciency, Γ̂, and the incident fluence, Φ0, are known, or by
fitting a curve to the exponentially decaying slope.49–51

More recently, a frequency domain method for quantification
of μa has been proposed by Guo et al.52 It too assumes a homo-
geneous, nonscattering medium, and the starting point is that the
measured data will be pðtÞ as given in Eq. (21) convolved with a
frequency-dependent transfer function that will depend on both
the acoustic absorption and the measurement system frequency
response. As the magnitude of the Fourier transform of pðtÞ is
jPðωÞj ¼ ðΓ̂Φ0μa∕2Þ½ðμac0Þ2 þ ω2�−1

2, the ratio of two measure-
ments made at different optical wavelengths, λ1 and λ2, may be
written as

jPðλ1;ωÞj
jPðλ2;ωÞj

¼ Φ0ðλ1Þ
Φ0ðλ2Þ

�
c20 þ ½ω∕μaðλ2Þ�2
c20 þ ½ω∕μaðλ1Þ�2

�
1∕2

; (22)

where the system transfer function, the acoustic absorption term,
and the PA efficiency have canceled out. The three unknown
numbers μaðλ1Þ, μaðλ2Þ, and the surface fluence ratio Φ0ðλ1Þ∕
Φ0ðλ2Þ may be obtained by curve-fitting Eq. (22) to measured
acoustic spectra.

Guo et al. used this technique for quantification by OR-PAM,
which raises the question as to how a model that explicitly varies
only with depth, z, can be justified for use with OR-PAM, where
there is variation in lateral dimensions too. There are three con-
ditions that must be satisfied for the 1-D planar assumption to
hold and, therefore, for Eq. (22) to be true: (1) the medium prop-
erties, (2) the absorbed energy distribution, and (3) the acoustic
propagation must all be planar (1-D) on the scale of interest. The
first condition is satisfied as the light beam in OR-PAM is
focused to a spot (∼5 μm) much smaller than a typical vessel
diameter (∼30 μm), so the vessel can be considered to be a
homogeneous half-space. The second may be satisfied in the
region close to the surface where ballistic photons dominate the
fluence. The third, however, requires the acoustic waves to be
planar (or at least planar in a sufficient region that the detector
cannot tell that they are not planar everywhere), which does not
seem to be the case. The restriction of the illumination to a zone
with a lateral dimension of ∼5 μm and a depth of perhaps one
order of magnitude greater will not generate purely plane
waves propagating in the z direction, even within the acoustic
focus. There will be components propagating at angles to the
z-axis, so the detected acoustic wave will therefore not vary
exponentially according to expð−μac0tÞ, and Eq. (22) will
not hold.

Although this method appears to be justifiable only when
the illumination extends over a much larger region, Guo et al.
used it to analyze phantom OR-PAMmeasurements and showed
that for a highly absorbing homogenous ink phantom (30 to
225 mm−1) was recovered to within about �4 mm−1. The
method was also used to estimate absolute values for the absorp-
tion coefficients (and subsequently the oxyhemoglobin, deoxy-
hemoglobin, and total hemoglobin concentrations and sO2)
in a superficial vein and artery pair selected from 1 mm2

OR-PAM images of a nude mouse ear obtained at 561 and
570 nm.

3.2 Depth-Dependent Nonscattering Medium

For multilayered media in which each layer has a different
absorption coefficient, different exponentials could be fitted to
the parts of the curve corresponding to the different layers.
However, this becomes difficult when the layers are thin and
there is only a short region of curve to fit to. On the basis
that a layer of thickness Δz will absorb energy per unit area
Φ½1 − expð−μaΔzÞ�, where Φ is the fluence of the light entering
the layer, an expression for the absorbed energy density within a
stack of thin layers can be found.53,54 When the layers become
so thin that the absorption coefficient becomes a continuous
function of depth, the absorbed energy density may be
written as

HðzÞ ¼ μaðzÞΦ0 exp

�
−
Z

z

0

μaðζÞdζ
�
: (23)
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The fluence here appears as a form of Beer’s law, Eq. (11),
generalized to depth-dependent media. Karabutov et al.55,56

inverted this expression to find the following formula for
the absorption coefficient given the measured pressure
pðtÞ ¼ Γ̂Hðt ¼ z∕c0Þ:

μaðzÞ ¼
pðz∕c0Þ

c0
R
∞
z∕c0 pðtÞdt

; z ≥ 0: (24)

This has been experimentally verified by recovering absorp-
tion profiles for depth-dependent solutions of magnetite parti-
cles in oil55,56 and, in a slightly modified form to account for
the tail of the pressure signal pðtÞ when it is only known up
to a finite time, for dyed gelatin phantoms.57,58

3.3 Homogeneous Scattering Medium

In biological tissue the light is scattered significantly for depths
greater than a few hundred microns, and this must be taken into
account. In 1-D the introduction of a significant level of optical
scattering has two principal effects. First, the decay rate of the
fluence (beyond a few mean free paths) is no longer governed
purely by the absorption coefficient, so fitting an exponential to
the decaying part of the curve will not recover μa. For a colli-
mated beam, the fluence close to the surface will decay approxi-
mately as expð−μtzÞ and at deeper depths where the light is
diffuse as expð−μeffzÞ (see Sec. 2.2.2). Second, the maximum
value of the fluence may not be at the surface but some distance
below it (due to backscattering), so the maximum amplitude of
the signal cannot be used directly to estimate μa either. Oraevsky
et al.59,60 used the approximate model for the fluence61 given by
Eq. (17), according to which the absorbed energy profile is
HðzÞ ≈ μakΦ0 expð−μeffzÞ in the diffuse regime. The factor k
accounts for the backscattered light and the resulting increase
in the absorbed energy density below the surface and is
given by k ¼ 1þ 7.1Rd∞, where Rd∞ is the diffuse reflectance
from the surface.61 By measuring this diffuse reflectance and
fitting Eq. (17) to the exponentially decaying part of the mea-
surement, μa could be inferred from the amplitude of the fitted
curve extrapolated to z ¼ 0, that is, from μakΦ0. Subsequently
μeff was measured from the slope of the curve, and μ 0

s calculated
from it, by use of the known μa. Rather than measuring the
diffuse reflectance, Fainchtein et al.62,63 modeled it as approxi-
mately Rd∞ ≈ expð−7μa∕μeffÞ. Note that in both cases an addi-
tional optical measurement, or an additional assumption, is
required to allow both μa and μ 0

s to be estimated from the PA
signal.

3.4 Measurements in Blood

In this section we appear to make a detour from the main theme
to discuss blood. The main reason is that the hemoglobin in
blood is the most important source of contrast for PA imaging
(although the rationale for discussing it here is just that several
researchers have made 1-D PA measurements of the properties
of blood). There are several reasons why it is so prominent in PA
imaging studies and so important: (1) it is naturally occurring so
there is no need for an exogenous contrast agent, (2) hemoglobin
is the dominant endogenous chromophore in the wavelength
range that corresponds to the “near infrared window” where
the deepest penetrations are possible, and (3) multiwavelength
measurements of the absorption of blood have the potential
to provide functional information about the tissue through the

oxygen saturation, sO2, which has direct physiological rele-
vance. One goal of QPAI is to obtain 3-D images in which
the voxel values are accurate estimates of sO2. The precision
and accuracy with which PA methods can be used to determine
the properties of blood, such as the level of oxygenation and
the total hemoglobin concentration, are therefore of great
interest.

3.4.1 Blood oxygen saturation

Blood oxygen saturation, sO2, is defined as the ratio

sO2 ¼
CHbO2

CHbO2
þ CHHb

; (25)

where CHbO2
and CHHb are the concentrations of oxyhemoglobin

and deoxyhemoglobin respectively, which are related to the
optical absorption coefficient of blood via their molar absorption
coefficient spectra aðλÞ:
0
B@

μa;bloodðλ1Þ
..
.

μa;bloodðλNÞ

1
CA ¼

0
B@

αHbO2
ðλ1Þ αHHbðλ1Þ
..
. ..

.

αHbO2
ðλNÞ αHHbðλNÞ

1
CA
�
CHbO2

CHHb

�
:

(26)

This matrix of molar absorption coefficients is the linear spec-
troscopic mapping Lλ in Fig. 2. As sO2 is a ratio, the concen-
trations CHbO2

and CHHb do not need to be known absolutely but
only to within a multiplicative constant. As long as the constant
is the same for both, then it will cancel out. This implies that a
relative measurement of the absorption coefficient, Kμa;bloodðλÞ,
will be sufficient to determine sO2 as long as the multiplicative
factor K does not depend on wavelength.12 To use the ampli-
tudes of PA signals as relative measurements of μa, it is neces-
sary to find a scenario in which the constant K, which for PAwill
be K ¼ Γ̂Φ, is independent of wavelength. This is not true in
general, in fact it is rarely true, and assuming it to be so64 is
likely to result in significant errors in sO2 estimates. If PA mea-
surements of sO2 are ever to become widely used and trusted in
clinical practice, then this issue needs to be addressed properly.
Of course, this is just one instance of the more general problem
that, to obtain absolute estimates of concentrations such as
CHbO2

and CHHb, the wavelength dependence of the fluence
must be accounted for.

3.4.2 Cuvette measurements

Early experiments using PA to measure the properties of blood
were mostly conducted with cuvettes, where the blood is pre-
sented as a 1-D homogeneous target and the experimental para-
meters are well-controlled. Using a low frequency ultrasound
detector (<1 MHz), Fainchtein et al.62,63 made measurements
of the wavelength dependence of the amplitude of the peak of
the PA wave which showed qualitative agreement with the
absorption spectrum of blood (710 to 870 nm), both for
blood in a cuvette and in a canine arterial-venous shunt. The
measured spectrum changed approximately as expected as the
level of oxygen in the blood was varied, but no quantitative esti-
mates were made. Savateeva et al.65 used a broadband detector
(∼40 MHz) to measure the exponential slope of the PA signal in
order to estimate the attenuation coefficient and showed that it
varied linearly with the level of oxygen saturation at 532, 757,
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and 1064 nm wavelengths. Esenaliev et al.66 showed a similar
result at 1064 nm with a lower bandwidth transducer. However,
none of these authors provided estimates of absolute sO2.

Building on these preliminary results, Laufer et al.67 esti-
mated blood sO2 in a cuvette by making measurements of
the slopes and peak-to-peak amplitudes of PA signals with a
broadband detector, ∼15 MHz, from 740 to 1040 nm in
10 nm increments. They found that the light passing through
the cuvette was sufficiently affected by scattering (due to the
blood cells) that it could not be modeled as expð−μazÞ and
instead was modeled by a 1-D version of the δ-Eddington
approximation. This model was fitted by a Nelder-Mead algo-
rithm to both the measured PA amplitudes and, separately, to
measurements of μeff obtained from the slopes of the exponen-
tially decaying PA signals. The sO2 was obtained with an accu-
racy of �2.5% when using measurements of μeff and�4% from
amplitude measurements. The smallest change in sO2 that could
be accurately measured was �1%. These promising results sug-
gest that PA measurements can be used to estimate sO2 suffi-
ciently accurately to be clinically useful, but the extension of
this technique from 1-D to 3-D is a nontrivial matter.

3.5 Applicability of 1-D Methods in Practice

For all methods discussed in this section, which are based on
1-D assumptions, the accuracy of the recovered parameters
will depend on how well the experiment approximates to 1-D.
What must be the case for this to be a good approximation?
There are three things to consider, and they are not independent:
the acoustic propagation, the fluence distribution, and the med-
ium properties. For the acoustic propagation to be considered as
1-D, the PA wave that is generated must be a plane wave per-
pendicular to, say, the z-axis [i.e., it must be invariant in the (x, y)
plane], or rather it must be planar in a sufficiently large region
that it appears planar to the detector. For an omnidirectional
detector, no signals will be detected from outside a radius r ¼
c0T from the detector, where T is the time over which the signal
is measured, so the wave need only be planar within this region.
This requirement can be relaxed if, for example, the detector is
highly directional, as it will only be sensitive to parts of the wave
arriving normally.

For the initial acoustic pressure distribution to generate only
plane waves, it is necessary that the fluence distribution and
medium properties are invariant in the (x, y) plane too. Two
separate cases will be considered for the fluence: nonscattering
and scattering media. In a nonscattering medium, the condition
that the fluence varies only with depth requires a collimated
source of light that does not diverge significantly and has
a radial profile that is flat over the region with radius c0T .
When these conditions hold in a region of radius R, then
Eq. (21) is true for t < R∕c0. In scattering media, in the super-
ficial region close to the illumination surface where z ≪ 1∕μt,
where ballistic (unscattered) photons dominate over scattered
photons, the fluence will decay one-dimensionally as ΦðzÞ ¼
Φ0 expð−μtzÞ and so the acoustic signal can be written as
pðtÞ ¼ ðΓ̂Φ0μa∕2Þ expð−μtc0tÞ for t ≪ 1∕ðc0μtÞ or t < R∕c0,
whichever is smaller. When considering deeper depths where
the scattered photons dominate the field, there is a much
more stringent requirement. In order to assume that the light flu-
ence decays as expð−μeffzÞ in the diffusive regime, z ≫ 1∕μt, it
has been shown that it is necessary to ensure that the illumina-
tion is constant over a much wider region than the sensitive zone
of the detector, perhaps as large as r ¼ 10c0T .

25 With smaller

illumination regions, the light fluence will decay faster than
expð−μeffzÞ because of geometrical spreading. Clearly, for the
fluence to depend only on depth it is not enough to have a suffi-
ciently broad source, it is also necessary that the optical proper-
ties depend only on depth in the region of interest too.

As a final comment on 1-D methods, it is worth recalling that
diffraction cannot occur in 1-D, hence divergences from 1-D are
sometimes described as “problems of diffraction.”57,58,68,69

Indeed, the lack of diffraction and the positivity of the initial
pressure distribution give a simple way to check experimentally
that the 1-D assumption holds: a truly planar 1-D PA signal
detected by a sufficiently broadband detector will not contain
negative components.70

4 Quantitative Estimates from Single-Point
Measurements

One-dimensional characterizations are often inappropriate for
measurements made in biological tissue, where the optical prop-
erties are heterogeneous and the geometrical spreading of the
acoustic waves is important. This section describes methods
that have been devised to overcome this limitation but are
still based on a single time series measurement from one detec-
tor. The detector may be one in an array of detectors or, in some
cases, be scanned in order to generate an image, as in PAM. The
difference between this section and Sec. 5 is that here the quan-
titative information is extracted separately for each point, that is,
for each time series, whereas in Sec. 5 all the measurements are
used together in the QPAI inversion, for example, by generating
a PAT image and using that as the primary data in the inversion.

4.1 Single Cylindrical Absorber

4.1.1 Linearity with bandlimited detection

Assume that a scattering medium contains a single absorber of
known shape and position relative to a detector, so for a known
illumination and detector response the relationship relating μa of
the absorber to the amplitude of the measured PA wave can be
derived. This is one instance of the operator W in Fig. 2 and, in
certain cases, it may be found that this function is approximately
linear, which allows W−1 to be obtained trivially. This approach
was taken by Sivaramakrishnan et al.12,71 for the case of a
cylindrical absorber (simulating a blood vessel). They consid-
ered a uniformly absorbing cylinder of radius a illuminated
from all sides equally (i.e., within the diffusive regime), and
a bandlimited detector perpendicular to the vessel axis with a
central frequency of f c ¼ c0∕λc, where λc is the associated cen-
ter wavelength. By calculating the signal from the detector a
fixed distance from the vessel, they found two scenarios for
which the peak PA amplitude varied approximately linearly
with μa: (1) for small vessels a ≪ 1∕μa, and (2) for large vessels
a > λc when a transducer with λc < 1∕μa is used. For a suitably
isolated blood vessel, this linear model provides a way of mea-
suring the absorption coefficient spectrum to within a constant
factor, which can be used with Eqs. (25) and (26) to calculate
blood sO2. By making a measurement at an isosbestic point
(a wavelength at which αHbO2

¼ αHHb), a relative estimate of
the total hemoglobin concentration, HbT, (i.e., to within an
unknown constant factor) can also be found. Measurements
on an experimental phantom consisting of an ink-filled tube
of diameter 0.25 mm confirmed that the signal measured by
the transducer (with a central frequency of 25 MHz and 90%
bandwidth) varied linearly with the absorption coefficient up
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to μa ≈ 180 cm−1(μaλc ≈ 1, λc < a). This was used to success-
fully recover the wavelength dependence of the absorption coef-
ficient of blood between 575 and 600 nm. The same experiment
with a 10 MHz transducer (μaλc ≈ 3, λc < a) failed to recover the
spectrum correctly.12

The fact that this method reduces the nonlinear inversion
W−1 to a linear problem is appealing. However, its main limita-
tion lies in the fact that it is based on a model of a single absorber
in a purely scattering (nonabsorbing) background medium,
which is not representative of real tissue that will contain addi-
tional vessels, capillaries, extravascular blood, lipids, water, and
potentially other absorbing molecules such as melanin. The
spectrum of the light reaching the vessel of interest will therefore
be colored by its passage through the background medium
because of the additional chromophores present, and the mea-
sured spectrum cannot confidently be related to the absorption in
the vessel alone.

4.1.2 Invasive correction for wavelength dependence

To translate the linear method above from phantom measure-
ments into real tissue, a measurement or estimate of the wave-
length dependence of the fluence local to the vessel is required.
Wang et al.72 used transmission measurements of light through
ex vivo skin and skull samples to arrive at a first-order correction
factor for the spectrum. With this correction, sO2 was estimated
in rat brain vasculature. This relies on the optical properties of
the ex vivo samples being representative of in vivo conditions,
which is doubtful. In an attempt to overcome this limitation,
Maslov et al.71,73–75 inserted a plain black absorbing film
with a spectrally flat absorption coefficient at the depth of inter-
est into the tissue at the level of the vessel and measured the
spectrum of the PA signal generated by it. Under conditions
in which there is no backscattering or the backscattered light
is negligible, this method would measure the correct wavelength
dependence of the fluence where the light remains collimated,
but where there is significant backscattering (as there is in tis-
sue), the part of the fluence caused by photons traveling back
upwards to the vessel from below will not be accounted for.
Clearly, this invasive preliminary measurement cannot be per-
formed on targets that one would like to study noninvasively
and longitudinally. The invasive procedure might be performed
on one animal and the noninvasive measurement made on
another, but the possibility of variation between the two intro-
duces uncertainty in the wavelength correction. Despite these
uncertainties, this approach has been applied to the estimation
of sO2 in the skin of small animals using PA microscopy.73,74,76

4.1.3 Correction for wavelength dependence using a
known contrast agent

In a similar spirit but less invasively, Rajian et al.77 propose the
use of an exogenous contrast agent instead of a black absorbing
layer to help estimate the local fluence. The principle is the fol-
lowing: a first measurement is made in the usual way in which
the PA signal is proportional to the product of the fluence and
absorption from just the endogenous chromophores,

p1ðλÞ ¼ BΦðλÞ
X
k

CkαkðλÞ; (27)

where B is an unknown scaling factor (which will depend on the
PA efficiency, the detector sensitivity, etc.) and ΦðλÞ is the

unknown wavelength-dependent fluence. A small quantity of
contrast agent is then introduced, so the second PAmeasurement
is given by

p2ðλÞ ¼ B 0Φ 0ðλÞ
�X

k

C 0
kαkðλÞ þ CCAαCAðλÞ

�
; (28)

where CCA is the contrast agent concentration and αCAðλÞ is its
known absorption spectrum. The primes indicate that the quan-
tities may have changed from the introduction of the contrast
agent. Under conditions where the fluence, the concentrations
of the endogenous absorbers, and the constant B do not change
much when the contrast agent is introduced, so that
ΦðλÞ ≈ Φ 0ðλÞ, Ck ≈ C 0

k , and B ≈ B 0, the local fluence can be
estimated as

ΦðλÞ ≈ p1ðλÞ − p2ðλÞ
BCCAαCAðλÞ

: (29)

Substituting this into Eq. (27) leads to the linear relationship

CCAαCAðλÞp1ðλÞ
p1ðλÞ − p2ðλÞ

≈
X
k

CkαkðλÞ; (30)

which, so long as CCA is known, can be inverted straightfor-
wardly to give the concentrations of the endogenous chromo-
phores. This approach has the advantage that the (often
unknown) scaling factor B cancels out. However, it requires
the assumptions that the fluence is the same before and after
the injection of the contrast agent and that the concentration
of the contrast agent is known accurately. Unfortunately, it is
unlikely that the fluence is insensitive to absorption changes
large enough to affect the measured PA signal.

4.2 Model-Based Minimization

Laufer et al.78 describe a method that can both account for
absorption in the tissue surrounding the vessel of interest and
can be more easily generalized to different targets and measure-
ment configurations. These are part of a series of papers67,78,79

describing the evolution of a minimization-based inversion
scheme referred to briefly in Sec. 3.4.2. They considered the
PA time series recorded at a single transducer from three
tubes each lying perpendicular to the transducer, each at a dif-
ferent fixed distance from the transducer along the line of sight,
and all three simultaneously illuminated from the opposite side
from which the signals were detected. To mimic real tissue, the
background medium was both scattering and absorbing. The
separation of the tubes was such that the PA signals from
each tube could be identified separately. This allowed spectra
to be recorded from the peak-to-peak amplitudes of the PA sig-
nals: one spectra per tube and three from the extraluminal space.
A two-stage forward model was used in the inversion (i.e., sepa-
rate light and acoustic models, Tλ and A). The light transport
was modeled with a two-dimensional (2-D) finite element
δ-Eddington diffusion model, and a simplified acoustic propa-
gation model was used to convert the absorbed energy density to
a pressure time series. Six modeled spectra were calculated from
this modeled time series as above, by taking the peak-to-peak
values. For each of the three tubes, i ¼ 1; 2; 3, the intraluminal
absorption coefficient was written as the sum of contributions
from three absorbers: oxyhemoglobin, deoxyhemoglobin, and
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water; the absorption outside the tubes also included lipids, a
contrast agent (NIR dye), as well as blood and water:

tubes μa;iðλÞ ¼ CHHb;i αHHbðλÞ þ CHbO2;iαHbO2
ðλÞ

þ μa;H2O
ðλÞ;

background μa;bgðλÞ ¼ CHHb;bgαHHbðλÞ þ CHbO2;bg
αHbO2ðλÞ

þ μa;H2O
ðλÞ þ μa;lipidsðλÞ

þ CdyeαdyeðλÞ: (31)

The scattering coefficient was written as μsðλÞ ¼ ksαscatðλÞ,
where the wavelength dependence of the scattering αscatðλÞ was
considered known in advance, although the amplitude ks was
not. There were therefore 11 unknown scalars to be determined:
CHbO2

and CHHb for each tube and the background; Cdye in the
background; scattering ks; and an overall amplitude scaling fac-
tor, K, related to the incident fluence and the PA efficiency.
These were found using a least-squares minimization
(Sec. 2.3.2), specifically the Nelder-Mead method. This then
allowed the oxygen saturation, sO2, and the total hemoglobin
concentration to be estimated. The results compared favorably
with those of a laboratory CO-oximeter, with a resolution of
�4% and accuracy in the range −6 to +7%. It should be empha-
sized that the inclusion of chromophores of unknown concen-
tration in the background medium as part of the inversion
precludes having to make wavelength corrections of the sort
described in Secs. 4.1.2 and 4.1.3.

In a subsequent paper,79 Laufer et al. improved and general-
ized this technique by improving the correspondence between
the model and the actual physical situation. This was done in
a number of ways: by using a full-wave 3-D acoustic propaga-
tion model rather than a simplification, by including a correction
factor to account for the difference between the 2-D light model
used and the 3-D nature of the fluence distribution in practice (a
further improvement would be to use a full 3-D light model),
and most significantly by taking the spectra from 2-D PA images
obtained at multiple wavelengths, rather than from the pressure
time series amplitudes. Because this approach (1) can estimate
the unknown (although constant) scattering rather than assum-
ing it is known or negligible, (2) can obtain absolute concentra-
tions (e.g., of oxyhemoglobin and deoxyhemoglobin), (3) has
been demonstrated with measured multiwavelength data from
known phantoms, and (4) is applicable to full 3-D PAT images
(i.e., it is not restricted to superficial or single vessels), this tech-
nique has come closest to date to a practical and generally
applicable method for quantitative spectroscopic PAT.

The principal remaining restriction in this model-based
approach is the prior knowledge of the target geometry that
is required. In each of these inversions, to reduce the number
of unknowns to a manageable number, the domain was divided
into regions assumed to have constant optical properties, for
example, into a few regions corresponding to dye-filled
tubes, and the remainder as a “background” region (see
Sec. 2.3.4). The amount known about the parameterization a
priori was reduced as the sophistication of the inversion
increased. In Ref. 78 it was known that the absorbers were
tubes lying on axis, but their depths and diameters were esti-
mated from the measured PA time series. In Ref. 79 all that
was known beforehand was that the absorbers were tubes,
and both their positions and sizes were found from PA images.
In principle, these positions and sizes could even be included as

unknowns in the inversion. The assumption that the domain has
piecewise constant optical properties is a significant assumption
that simplifies the problem in two related ways: first, it reduces
the number of unknowns from potentially many tens of thou-
sands to just a few so the posedness of the inversion improves
and it is much simpler to compute the inversion; second, it
reduces the effect of errors in the PAT image on the quantitative
estimates. To use images in the inversion requires measurements
made over an array of detectors rather than single-point detec-
tion, but this latter inversion was nevertheless included in this
section because it follows logically from the preceding work. In
the sense that it uses images, however, it provides a link to the
next section where the inversions start with an estimate of the
absorbed energy density distribution.

5 Full-Field Quantitative Photoacoustic Imaging
This section is concerned with techniques to convert tomo-
graphic images of the absorbed energy density, HðxÞ, here con-
sidered as the measured data, into images of optical coefficients
or chromophore concentrations. In other words, the acoustic
inversion, A−1, is assumed solved, and the focus in now wholly
on the optical inversions T−1 or T−1

λ without the simplifying
approximations that have been made in Secs. 3 and 4. Some
simplifying assumptions are still made however. In particular,
most of the methods in Sec. 5.1 assume the scattering is
known and just recover the absorption coefficient, and the meth-
ods in Sec. 5.2 assume the diffusion approximation holds, which
will not usually be true close to the surface. It is also worth
emphasizing that most of the methods in Sec. 5 recover the
absorption coefficient at a single wavelength, so to obtain chro-
mophore concentrations will require the acquisition of images at
different wavelengths and a subsequent multispectral inversion,
L−1λ . Section 5.2.4 solves the combined spectral and optical
inversion, T−1

λ .
No particular distinction is made between 2-D and 3-D in

this section as none of the methods described depends critically
on the difference, although most have been demonstrated with
2-D rather than 3-D data sets as the computations are more
manageable.

5.1 Inversion for Absorption Coefficient Only

When the PA efficiency is known and the image reconstruction
is free of errors or artifacts, the PA image is an image of the
absorbed energy density which can be written as [Eq. (2)]

HðxÞ ¼ μaðxÞΦ½x; μaðxÞ�; (32)

where the dependence of the fluence on the absorption is shown
explicitly. The principal challenge in this inversion is the non-
linear dependence of H on μa. A common way to tackle such
problems is to notice that the nonlinear behavior is close to lin-
ear if the changes are small. Consider the case in which the
absorption is a perturbation over a known and homogeneous
background, μaðxÞ ¼ μa;0 þ δμaðxÞ. The resulting fluence can
be written as a sum of an unperturbed part, Φ0ðxÞ, correspond-
ing to μa;0, and a second part δΦðxÞ, corresponding to the
absorption perturbation δμaðxÞ. The change in the absorbed
energy distribution will (neglecting the second-order term)
consist of two terms:

δHðxÞ ≈ δμaðxÞΦ0ðxÞ þ μa;0δΦðxÞ; (33)
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where the first term is due to the local absorption coefficient
perturbation, and the second to changes in the local fluence
caused by the absorption perturbation.

5.1.1 Unchanged fluence

In Eq. (33), the change in the absorbed energy, δH, is still non-
linearly related to the change in the absorption coefficient, δμa,
because δΦ depends on δμa. If it is assumed that the fluence
remains unaffected by the absorption perturbation (which cer-
tainly does not hold in all regimes in which PA imaging may
be applied, but may be useful for very weak absorbers), then
the second term in Eq. (33) can be neglected to give the linear-
ized version:

δHðxÞ ≈ δμaðxÞΦ0ðxÞ: (34)

This immediately shows why difference imaging will never
remove the effect of the fluence even for very small absorption
perturbations: if δH is considered to be the difference between
two images, δH ¼ H2 − H1, then—while it depends on the dif-
ference in absorption coefficient, δμa, as expected—the effect of
the fluence still remains. Interestingly, using a ratio of images
under the same assumption that the fluence remains unchanged
gives an image proportional to the change in absorption coeffi-
cient from which the effect of the fluence has been removed:

H2∕H1 ≈ ðμa þ δμaÞΦ0∕μaΦ0 ¼ 1þ ðδμa∕μaÞ:

When the fluence due to the homogeneous part of the
absorption, Φ0, is known, Eq. (34) can be inverted trivially
to obtain an estimate for the absorption perturbation δμaðxÞ ¼
δHðxÞ∕Φ0ðxÞ. Ripoll and Ntziachristos80 modeled this unper-
turbed fluence with a Green’s function based on the assumptions
that (1) the light emanates from a point source embedded in the
scattering medium and (2) the fluence distribution obeys the DA
(Sec. 2.2.2). To calculate this background fluence, the scattering
coefficient as well as the homogeneous part of the absorption
coefficient must be known. They assumed the scattering is
homogeneous and state that an “underlying assumption is
that of insensitivity to variations of tissue scattering properties”
which is justified, they say, by the “experimental demonstration
of high-quality images, obtained in vivo, even though the scat-
tering variations were not explicitly accounted for.” However,
while it is certainly true that high quality qualitative PA images
can be obtained without considering the scattering perturba-
tions, it is not obvious that quantitative estimates made with
those images will be similarly unaffected. (Note that Ripoll
and Ntziachristos embedded this linearized optical reconstruc-
tion within an acoustic image reconstruction algorithm.)

Rather than studying the perturbed problem, a first-order cor-
rection to the light fluence can be made by simply dividing H by
Φ calculated assuming homogeneous (and known) background
optical properties.81–83 A similarly restrictive assumption of non-
changing fluence underlies the suggestion that over a small
wavelength range the fluence may be invariant to changes in
the wavelength, so “measurements (images) at one wavelength
can be explicitly used to normalize for photon intensity hetero-
geneity in tissues at the other wavelengths.”84 Earlier, Kiser
et al.85 obtained PAT images of tumors implanted in murine
mammary fat pads at 758 nm (peak Hb absorption) and
798 nm (isosbestic point), and by making the assumption
that the fluence distribution does not change between the two

wavelengths, they obtain images estimating the “oxygenated
component” and “deoxygenated component,” although no
scale (relative or absolute) is given.

There are two difficulties with this approach. The first is that
the background properties of the target may not be known, soΦ0

cannot be calculated, and the second and more important is that
the assumption that the fluence remains unchanged when the
optical absorption changes will only hold for very small pertur-
bations about the background values. The latter problem is
slightly alleviated with the method described in the next section.

5.1.2 Born approximation

Assumptions similar to Sec. 5.1.1 above—known homogeneous
scattering, known homogeneous background absorption, and
DA for the light transport—are made by Zemp.86 However,
rather than assuming the fluence remains unchanged following
an absorption perturbation, a correction to the fluence is made.
When the fluence obeys the DA, the perturbed fluence δΦ due to
the absorption perturbation δμa also obeys a diffusion equation:

ðμa;0 − D0∇2ÞδΦðxÞ ¼ −δμaðxÞΦðxÞ; (35)

where Φ is the unknown fluence and D0 ¼ ½3ðμa;0 þ μ 0
sÞ�−1 is

the optical diffusion coefficient in the unperturbed state.
Using the free-space Green’s function, G0, Eq. (16), we may
write the solution to Eq. (35) as

δΦðxÞ ¼ −
Z
Rn

G0ðx; x 0Þδμaðx 0ÞΦðx 0Þdx 0: (36)

By replacing the unknown fluence, Φ, with its unperturbed
value, Φ0 (Born approximation), a linear expression relating
the absorbed energy perturbation, δH, and the absorption per-
turbation, δμa, results in:

δHðxÞ ≈ δμaðxÞΦ0ðxÞ

− μa;0

Z
Rn

G0ðx; x 0Þδμaðx 0ÞΦ0ðx 0Þdx 0: (37)

As it is linear, this equation may be discretized and written as
a matrix equation relating vectors of δH and δμa, which can then
be inverted with any suitable method.

Interestingly, Zemp86 uses a ratio data type constructed from
two images by dividing one by the other. By using two images
of the same target obtained with two different optical sources
(same wavelength but illuminating from different places or
with different patterns), this has the effect of removing any
dependence on the PA efficiency and other instrumentation-
related scaling factors. Measurements of the fluence at the
boundary were also included as additional data in the recon-
struction (compare Sec. 5.1.6). The extension of this idea to
absorption and scattering estimation is described in Sec. 5.2.1.

Although these linearized inversions may have the computa-
tional advantages that a known solution such as a Green’s func-
tion can be used for the unperturbed fluence, and the inversion is
straightforward, they are only useful when the absorption per-
turbations are small (even when using the Born approximation)
and the background coefficients are known.

5.1.3 Fixed-point iteration

When the absorption cannot be modeled accurately as a homo-
geneous background plus a small perturbation, a nonlinear
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inversion scheme is required. Cox et al.87,88 rearranged Eq. (32)
to obtain a fixed-point iteration for μaðxÞ that makes no linear-
izing assumptions:

μðnþ1Þ
a ðxÞ ¼ HðxÞ

ΦðnÞ½x; μðnÞa ðxÞ�
; (38)

where ΦðnÞ, the fluence estimate at iteration n, is calculated by a
numerical model from the latest absorption coefficient estimate,
μðnÞa . If implemented crudely, problems may arise wherever there
is noise in the data and the fluence takes small values. To reduce
this instability, the fluence in the denominator may be replaced
with the term ΦðnÞ þ σ, where σ is a regularization parameter
chosen by the user and dependent on the signal-to-noise ratio.
Alternatively, it may be possible to restrict the region over which
the inversion is performed to regions where the fluence estimate
is above some noise-dependent threshold value. Cox et al.87,88

demonstrated this schemewith numerical examples in 2-D using
a finite-element model of the DA, although it will also apply in
3-D and does not depend on this particular choice of light model
or on any particular illumination geometry. Indeed, the same
scheme has been used with the RTE89 (Sec. 5.3). Jetzfellner
et al.90 note that when the value used for the scattering is
wrong, so the fluence from the model is biased, the estimates
of the absorption begin to diverge after several iterations. Never-
theless, it has been used with experimental data to estimate
absorption coefficients.91–93

5.1.4 Noniterative inversion

Banerjee et al.94 realized that the absorbed energy μaΦ appears
directly in the DA model, Eq. (14), and the following equation
can therefore be written for the fluence:

∇ · ðD∇ÞΦ ¼ H − q0: (39)

By assuming that the optical scattering coefficient is indepen-
dent of absorption, D ≈ ð3μ 0

sÞ−1, and solving Eq. (39) numeri-
cally, the absorption coefficient may be estimated by μa ¼ H∕Φ.
When the optical diffusion is considered to depend on the
absorption, the estimate of the absorption iteration could be
improved by use of iteration.

5.1.5 Least-squares minimization

The inversion for absorption has been tackled by formulating it
as a least-squares minimization (Sec. 2.3.2) of the functional

argmin
μa

ε ¼ 1

2
kHmodelðμaÞ − Hobsk2 þ PðμaÞ; (40)

where Hobs is the measured image, and the penalty functional,
P, is typically chosen to enforce Tikhonov or Total Variation
regularization. Jiang and colleagues95 applied the Gauss–
Newton method, which, as it requires the calculation and storage
of a Jacobian matrix as well as the inversion of the Hessian esti-
mate, quickly becomes computationally intensive for large or
high resolution images (see Sec. 5.2.3). Greater computational
efficiency could be achieved with gradient-only methods, as the
functional gradient vector can be calculated quickly by an
adjoint model96 (see Sec. 5.2.5), although more iterations will
usually be required for convergence.

5.1.6 Correction based on diffuse optical tomography

As the absorbed energy density H ¼ μaΦ, if the fluence, Φ,
were known, then the inversion for μa would become trivial.
This is the view taken in this and the next section. If there
were some complementary imaging modality that could provide
an image of the fluence with the same spatial resolution with
which the PA image provides the absorbed energy density,
then the absorption coefficient could be found just by dividing
the PA image by the fluence image. Unfortunately, no such
option is currently available. The fluence can be estimated
from optical boundary measurements by diffuse optical tomo-
graphy (DOT), but the high spatial frequencies are lost because
of the diffusive nature of the light propagation, and only a low
frequency approximation to the fluence can be obtained this
way. Despite this limitation it has been proposed as a method
for obtaining a fluence estimate for quantitative PA imaging.97,98

In situations where the actual fluence has no high frequency
components, this method will recover accurate values for the
optical coefficients, so the skill to applying this approach suc-
cessfully is knowing, in advance, whether the unknown optical
coefficients are likely to give rise to a fluence that is sufficiently
smooth for this method to work. This may be the case when only
small weak absorbers are present, or when the absorption and
scattering coefficients themselves are smooth, although in this
case it may be that the estimates can be obtained by DOT
directly. [A procedure in which the localization is achieved
through “acoustic tagging” of light (i.e., acousto-optics) has
also been proposed.99]

5.1.7 Sparse basis decomposition

By taking the log of Eq. (32), the absorption and fluence can be
separated: logðHÞ ¼ logðμaÞ þ logðΦÞ. Rosenthal et al.100 pro-
pose using two different sparse representations for logðμaÞ and
logðΦÞ:

log½HðxÞ� ¼
X
n

anϕnðxÞ þ
X
m

bmψmðxÞ; (41)

where {ϕn} and {ψm} are the two sets of basis functions, and an
and bm are the coefficients. If {ϕn} and {ψm} can be chosen so
that the absorption is sparse in one basis (only a few coefficients
are large) and the fluence is sparse in the other, then this method
may be able to recover both the absorption and fluence. If sui-
table basis functions are known a priori, then the aim is to find
the smallest number of nonzero coefficients, an, bm that satisfy
kH − Hobsk2 < ϵ, where ϵ is small, so that the absorption can be
reconstructed from μaðxÞ ≈ exp½P anϕnðxÞ�where only the first
few terms are included. This method applies to those cases
where the fluence and the absorption coefficient distributions
are sufficiently different types of function that they cannot
both be represented sparsely in the same basis but can each
be represented sparsely in different bases. In addition, it is
necessary that the basis sets that can distinguish between the
two are known. [They might be chosen based on prior knowl-
edge of the absorption distribution. For example, Rosenthal et
al. assume the fluence can be represented sparsely in a Fourier
basis (smooth), and the absorption, in a Haar wavelet basis
(stepped).] Even when these conditions are satisfied, a further
limitation of this method is that it cannot distinguish between
the components of absorption and fluence that are uniform
across the domain, so it can only recover μa to within an additive
constant. Nevertheless, its splitting of the absorption and
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fluence, its lack of dependence on knowledge of the scattering,
and its independence from a light model are attractive.

5.1.8 Fluence-dependent chromophores

A quite different approach would be to measure the fluence with
a specially designed PA contrast agent as a “probe” that can indi-
cate the value of the fluence at a point within the tissue. By using
a contrast agent that suddenly becomes more (or less) absorbing
at a particular fluence threshold, it would be possible to estimate
the fluence by noticing where in the image the contrast agent
stops absorbing as the illumination intensity is increased.
Gold nanorods that undergo a shape change at a known thresh-
old fluence have been suggested as a possible contrast agent.101

5.2 Inversions for Absorption and Scattering:
Diffusion Approximation

Most of the methods in Sec. 5.1 assumed that the optical scat-
tering (or optical diffusion) coefficient distribution was known.
However, this will not always be the case. Methods to measure
the scattering noninvasively have been proposed,102,103 although
they either only recover the scattering close to the tissue surface
or give an averaged bulk value, so techniques to invert Tðμa; μsÞ
are needed in general. Under the DA the scattering is described
by the reduced scattering coefficient μ 0

s , or equivalently the
optical diffusion coefficient D, and Eq. (32) becomes one or
the other of

HðxÞ ¼ μaðxÞΦ½x; μaðxÞ; μ 0
sðxÞ�;

HðxÞ ¼ μaðxÞΦ½x; μaðxÞ;DðxÞ�.
(42)

As discussed in Sec. 2.3.3, one difficulty with estimating
both absorption and scattering from one PA image is that
there will, in general, be more than one possible solution,
only one of which is the correct solution. Any method that
aims to recover both coefficients must therefore include some
prior information about their distributions, or the light fluence
perhaps, which can restrict the solution space sufficiently to
overcome this nonuniqueness.

5.2.1 Born approximation

The linearized approach of Sec. 5.1.2 can be extended to reco-
vering scattering and absorption perturbations simultaneously.45

The equation for the change in the fluence now contains an addi-
tional term for the optical diffusion perturbation (related to the
scattering),

ðμa;0 − ∇ · D0∇ÞδΦðxÞ ¼ ½∇ · δDðxÞ∇ − δμaðxÞ�ΦðxÞ;
(43)

so the total fluence can be written as

Φ ¼ Φ0 −
Z
Rn

G0ðx; x 0Þδμaðx 0ÞΦ0ðx 0Þdx 0

−
Z
Rn

δDðx 0Þ∇G0ðx; x 0Þ · ∇Φ0ðx 0Þdx 0: (44)

The expression for the change in the absorbed energy therefore
contains an additional term

δHðxÞ ≈ δμaðxÞΦ0ðxÞ

− μa;0

Z
Rn

G0ðx; x 0Þδμaðx 0ÞΦ0ðx 0Þdx 0

− μa;0

Z
Rn

δDðx 0Þ∇G0ðx; x 0Þ · ∇Φ0ðx 0Þdx 0;

(45)

where the unknown fluence inside the integrals has been
replaced with the fluence for the homogeneous case, Φ0,
and the identity ∫ ΩG0∇ · ðδD∇ΦÞdΩ ¼ ∫ ∂ΩδDG0∇Φdð∂ΩÞ−
∫ ΩδDð∇G0 · ∇ΦÞdΩ has been used assuming the surface inte-
gral tends to zero as the radius of the surface ∂Ω of the domainΩ
tends to infinity. In fact, Shao et al.45 do not use this approxima-
tion of the absorbed energy perturbation directly but, rather, use
the ratio of two images, Hð1Þ and Hð2Þ, obtained with different
illumination patterns, that is, different positions of the optical
source. As neither the absorption coefficient nor the PA effi-
ciency depend on the illumination, they cancel out leaving a
ratio of fluences, each of which can be written with the Born
approximation above:

Hð1Þ

Hð2Þ ¼
Φð1Þ

Φð2Þ ≈
Φð1Þ

0 −
R
G0ðx; x 0Þδμaðx 0ÞΦð1Þ

0 ðx 0Þdx 0 −
R
δDðx 0Þ∇G0ðx; x 0Þ · ∇Φð1Þ

0 ðx 0Þdx 0

Φð2Þ
0 −

R
G0ðx; x 0Þδμaðx 0ÞΦð2Þ

0 ðx 0Þdx 0 −
R
δDðx 0Þ∇G0ðx; x 0Þ · ∇Φð2Þ

0 ðx 0Þdx 0 : (46)

By discretizing the integrals and rearranging, this expression can
be rearranged into a matrix form

A

�
δμa
δD

�
¼ b; (47)

where the vector b consists of a combination of measured
images and modeled fields for the homogeneous case,
pð1Þ0 Φð2Þ

0 − pð2Þ0 Φð1Þ
0 , and the elements of matrix A contain pro-

ducts of the images and the (discretized) integrals. Matrix A
can be inverted with any appropriate matrix inversion algorithm,
with regularization as required to mitigate the effect of noise in
the images. (Even though two images are being used with
different illuminations to overcome the absorption-scattering

nonuniqueness, the fact that the light propagation is diffusive
in nature will result in some ill-posedness in the inversion.)
Note that although the quotient of two images was used in
the derivation above, it is never actually necessary to calculate
that quotient, so the issue of dividing by small numbers is
avoided. Interestingly, although the PA efficiency is canceled
out when forming the ratio in Eq. (46), it can be recovered after-
wards from the image of the initial pressure, p0, by calculating
the true fluence for one of the illumination patterns with the
(now) known absorption and scattering. The drawbacks of
the linearization remain, however: the Born approximation is
only accurate for small perturbations in the absorption and scat-
ter, and the values for the background coefficients need to be
known in advance.
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5.2.2 Direct “zero-divergence” method

Bal et al.44,104 have devised a method for solving the optical
inversion which requires neither a linearization nor the iterative
updating of the fluence. It is a direct rearrangement of the DA
assuming that two (or more) PA images, H1 ¼ μaΦ1,
H2 ¼ μaΦ2, obtained with two (or more) different illumination
patterns are available. The problem is restated in an equivalent
but slightly different form from most of this review, so rather
than trying to estimate the optical coefficients μa and μ 0

s (or
μa and D), the unknown parameters are defined as:

μ1 ≔
ffiffiffiffi
D

p

μa
; μ2 ≔ −

∇2
� ffiffiffiffi

D
p 	
ffiffiffiffi
D

p −
μa
D
: (48)

Multiplying the diffusion equation for the fluence Φ1 by Φ2,
and vice versa, and subtracting gives Φ2½μaΦ1 − ð∇ · D∇ÞΦ1�−
Φ1½μaΦ2 − ð∇ · D∇ÞΦ2� ¼ 0, which can be rearranged to
∇ · ½DΦ2

1∇ðΦ2∕Φ1Þ� ¼ 0. Recalling H ¼ μaΦ and defining
the vector field

β ¼ H1∇H2 − H2∇H1 ¼ H2
1∇

�
H2

H1

�
¼ μ2aΦ2

1∇
�
Φ2

Φ1

�
;

(49)

leads to the following concise relationship:

∇ · ðμ21βÞ ¼ 0. (50)

The procedure to reconstruct images of μa and D is then the
following: (1) Construct the vector field β from the two mea-
sured fields H1 and H2 by using Eq. (49). (2) Solve the transport
equation, Eq. (50), for μ1ðxÞ that is, find the scalar field that
makes the divergence of μ21β vanish. This is nontrivial and
will not be possible for all fields β, as discussed below.
(3) Find the second unknown scalar field through use of one
of the images H1 or H2 and the equation μ2 ¼ −∇2ðμ1H1;2Þ∕
ðμ1H1;2Þ, which can be found by rearranging the definition in
the second of Eqs. (48). (4) Solve ð∇2 þ μ2Þ

ffiffiffiffi
D

p ¼ −1∕μ1
for

ffiffiffiffi
D

p
, which also comes from Eqs. (48). (5) The final step

is to obtain μa ¼
ffiffiffiffi
D

p
∕μ1 from the first of Eqs. (48).

The key to this method is part (2), finding a solution to
Eq. (50). This may be done in a number of ways. Bal and
Ren104 discretize Eq. (50) and find μ1 by using a Bregman itera-
tion to minimize a functional consisting of the norm of the diver-
gence of μ21β and a regularizing total variation penalty term.
They used a low pass filter to ameliorate the difficulties in
the calculation of β caused by dividing by small values. A
more visual, but less practical, method of solving Eq. (50)
was proposed by Bal and Uhlmann.44 Using the chain rule,
we may rewrite Eq. (50) as

2β · ∇μ1 þ γμ1 ¼ 0; (51)

where γ ¼ ∇ · β ¼ H1∇2H2 − H2∇2H1. If s is a parametric
coordinate along a field line (integral curve) of the vector
field β that passes through position x then ∂x∕∂s ¼ β½xðsÞ�.
Using the chain rule shows that β · ∇μ1 ¼ ∂μ1∕∂s and so
∂μ1∕∂s ¼ −γμ1∕2. For a given point, x�, μ1ðx�Þ can be calcu-
lated by integrating γðxÞ along the field line of β that passes
through x�, starting from where that particular field line reaches
the edge of the domain:

μ1½x�ðsÞ� ¼ μ01 exp

�
−
1

2

Z
s

0

γ½xðs 0Þ�ds 0
�
; (52)

where μ01, the value of μ1½xðs ¼ 0Þ� on the boundary of the
domain, is assumed known. As μ1 ¼

ffiffiffiffi
D

p
∕μa, both D and μa

must be known on the boundary. While not necessarily leading
to a practical numerical approach, this makes clearer what con-
dition β must satisfy in order that the coefficients can be recov-
ered: every point in the domain must be connected to the edge of
the domain by a field line of β. As β depends only on the mea-
sured images, and therefore on the illumination patterns, for this
approach to work it is necessary to choose the illumination pat-
terns that result in a β that has field lines connecting every point
in the domain to the edge (or equivalently of a form such that
multiplying by it by a scalar field can make its divergence zero).
While there are no exact rules to guide the choice of illumina-
tions, the examples in Ref. 104 suggest that in practice this is not
a significant limitation and sensibly chosen illuminations (e.g.,
illumination on the top and bottom surfaces of the sample) will
suffice.

5.2.3 Least-squares minimization

The least-squares approach, introduced in Sec. 5.1.5 for recover-
ing the absorption alone, can be extended to the case when both
the scattering and absorption coefficients are unknown and must
be recovered from the data,96 provided the nonuniqueness is
overcome by using multiple wavelengths or multiple illumina-
tion patterns. To simplify the notation we assume that the
domain of interest has been discretized such that the unknown
absorption and diffusion coefficients can be represented by N ×
1 column vectors, μa, D ∈ RN , for example, representing the
values on the elements of a mesh. The measured image is stored
in an M × 1 vector, for example, nodal values of some mesh, so
Hobs ∈ RM . The task of recovering the unknown coefficients
(μa, D) becomes the task of adjusting the coefficients in
order to minimize the functional

argmin
μa;D

ε ¼ 1

2
kHðμa;DÞ − Hobsk2 þ Pðμa;DÞ: (53)

In this section, the DAwill be used as the light model, but the
general approach can be applied to other light models. The idea
is to iteratively improve the estimates of the unknowns starting
from initial guesses (μð0Þa , Dð0Þ) by choosing new values
μðkþ1Þ
a ¼ μðkÞa þ δμðkÞa , Dðkþ1Þ ¼ DðkÞ þ δðkÞ so that at each itera-

tion the value of ε½μðkþ1Þ
a ;Dðkþ1Þ� is smaller than ε½μðkÞa ;DðkÞ�.

The hope is that eventually the minimum of the multidimen-
sional surface of εðμa;DÞ will be reached, thereby giving the
values of ðμa;DÞ at which Hðμa;DÞ is the best match to Hobs

(given the constraints P).
To help find the minimum more quickly, the gradients and

second derivatives of ε (related to its curvature) are usually
used. The gradients of ε with respect to the optical coefficients,
ga, gD ∈ RN can be written as

ga ¼
∂ε
∂μa

¼ JTa ðH − HobsÞ þ ∂P
∂μa

;

gD ¼ ∂ε
∂D

¼ JTDðH − HobsÞ þ ∂P
∂D

;

(54)
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where the Jacobian matrices, Ja, JD ∈ RM×N are given by

Ja ¼
∂H
∂μa

¼ Φδþ μa

�
∂Φ
∂μa

�
;

JD ¼ ∂H
∂D

¼ μa

�
∂Φ
∂D

�
;

(55)

where δ is the Dirac delta function δðx − x 0Þ in the continuous
case, and a Kronecker delta δij in the discrete case and comes
from differentiating ∂μaðxÞ∕∂μaðx 0Þ. (Similarly with ∂DðxÞ∕
∂Dðx 0Þ below.) The Hessian matrix of second-order derivatives
of ε, H ∈ R2N×2N , may be written as

H ¼ ∂2ε
∂μi∂μj

≈ JTJ; J ¼ ½ Ja JD �: (56)

So far no explicit model for the light fluence has been intro-
duced, but in order to evaluate the Jacobians, a model is
required. If the DA is used, then ∂Φ∕∂μa and ∂Φ∕∂D can be
calculated from the sensitivity equations:

ðμa − ∇ · D∇Þ ∂Φ
∂μa

¼ −Φδ;

ðμa − ∇ · D∇Þ ∂Φ
∂D

¼ ∇ · δ∇Φ:

(57)

When using a particular discretization scheme, such as finite ele-
ments, the terms on the right-hand side may be calculated
directly by taking the derivative of the discretized forward
operator. In the Gauss–Newton method, the update to the
unknown parameters is calculated by�

δμa
δD

�
¼ −αðJTJÞ−1

�
ga
gD

�
; g ¼

�
ga
gD

�
; (58)

where the scalar α is chosen by linesearch to minimize ε at each
step. One advantage of the Gauss–Newton approach is that there
are many well-developed minimization algorithms available and
typically only a few iterations are required.

5.2.4 Multiwavelength minimizations

In the multiwavelength case, the unknowns are now the chro-
mophore concentration distributions, Ck, and the scattering
and the data are multiwavelength images Hobsðx; λÞ. The
error functional therefore becomes

argmin
Ck ;μ 0

s

ελ ¼
1

2
kHðCk; μ 0

sÞ − Hobsk2 þ PðCk; μ 0
sÞ; (59)

where k · k is now the norm over position and wavelength. The
gradients of ελ and H with respect to the chromophores are
simply related to those for the absorption coefficients. Using
the chain rule and Eq. (4) gives

∂
∂Ck

¼ ∂μa
∂Ck

∂
∂μa

¼ αk
∂
∂μa

. (60)

If the scattering is assumed to depend on wavelength as
μ 0
s ≈ aðxÞλ−b, then the gradients can also be simply calculated:

∂
∂a

¼ ∂μ 0
s

∂a
∂
∂μ 0

s
¼ λ−b

∂
∂μ 0

s
: (61)

Using these expressions, Cox et al.42 inverted for the concen-
trations and scattering distributions with the Gauss–Newton
method. Their numerical study used multiwavelength data in
2-D inversions with the assumptions that (1) the absorption
spectra of the constituent chromophores, αkðλÞ, were known
and (2) the scattering wavelength dependence b was known.
This proved sufficient to remove the nonuniqueness (without
the use of multiple illuminations) and allow the concentration
and scattering amplitude aðxÞ to be recovered.

5.2.5 Gradient-based minimizations

The functional gradients in Eq. (54) were calculated from the
Jacobian matrices, which may be large. However, in the DA
case there is a fast and memory-efficient way to calculate the
gradients with an adjoint model. Rather than having to solve
both Eq. (57) once per column of the Jacobian matrix, that
is, 2N times per iteration step, it is only necessary to run the
forward and the adjoint models once each:96

ðμa − ∇ · D∇ÞΦ ¼ q;

ðμa − ∇ · D∇ÞΦ� ¼ μaðH − HobsÞ:
(62)

From these two fields the gradients can be calculated directly:

ga ¼ ΦðH − HobsÞ −ΦΦ�; gD ¼ −∇Φ · ∇Φ�: (63)

Using a gradient-based split Bregman algorithm, Gao
et al.105,106 recently demonstrated that a gradient-based approach
combined with multisource data can successfully recover both
absorption and scattering. They recovered piecewise constant
absorption and scattering distributions in 2-D and 3-D by
using a total variation regularization term in the inversion. Bal
andRen104performed similar inversionswith theBFGSalgorithm
with multisource and multiwavelength data. A large number of
variations on the basic theme of using only gradients are possible,
but gradient-based approaches such as this certainly look promis-
ing as candidates for practical applications. The main drawback
remaining is the reliance (in these examples) on the DA, which is
rarely true for the whole region of interest in PA applications.

5.3 Inversions for Absorption and Scattering: RTE

Most of the inversion methods described so far have relied on
the DA, which is only accurate at distance further than a few
mean free paths away from the surface being illuminated. In
many PAT applications this surface region is of interest. For
these cases it is necessary to look to more accurate models
of light transport, such as the RTE (Sec. 2.2.1), Monte Carlo
models (Sec. 2.2.4), or the delta-Eddington approximation
(Sec. 2.2.3). Several authors have looked at using the RTE
for qPAI. Bal et al.107 show that in the transport regime, if
the unscattered and singly scattered components of the fluence
can be separated from the multiply scattered components, then
not only the absorption and scattering but also the anisotropy
factor, g, can be recovered. Unfortunately, this decomposi-
tion is impractical for most biological media of interest.
Yao et al.89 used the RTE with the fixed-point iteration of
Sec. 5.1.3, which assumes that the scattering is known, and com-
pared it with the same inversion using the DA. They showed that
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the RTE gave more accurate results for both simulations and a
simple experimental phantom study. Cox et al.108 showed that
the Gauss–Newton method (Sec. 5.2.3) with multiple illumina-
tion data can be used with the RTE to recover good estimates of
both absorption and scattering in a simple numerical 2-D
phantom.

6 Discussion

6.1 Multiwavelength Versus Single-Wavelength
Inversions

As mentioned in Sec. 2.1.1, Eqs. (4) and (5) suggest a two-stage
inversion strategy: first recover the absorption coefficients μa ¼
T−1ðHÞ then find the concentrations Ck ¼ L−1λ ðμaÞ, whereas
Eq. (6) suggests a single inversion, Ck ¼ T−1

λ ðHÞ. There may
be advantages to the latter strategy of recovering chromophore
concentrations directly. First, when there are more wavelengths
(more images) than chromophores, the number of unknown con-
centrations will be fewer than the number of unknown absorp-
tion coefficients (one per wavelength). As the problem can grow
very large when considering 3-D images (Sec. 2.3.4), this may
be an important consideration. Second, prior knowledge of spec-
tral information can be incorporated, which can remove the
absorption-scattering nonuniqueness. Third, it may require
less measured data: the most widely studied way to remove
the absorption-scattering nonuniqueness when inverting for
absorption coefficient at a single wavelength is to use images
recorded with different illumination directions, so two or
more images per wavelength are required in this approach. If
the nonuniqueness can be removed through the use of spectral
priors, then only one image per wavelength is necessary, that is,
half the amount of measured data. A possible advantage of
the two-stage inversion strategy is that the single-wavelength
inversions for μa are independent and so can be performed
straightforwardly in parallel.

6.2 Nonlinearity

The nonlinearity of the optical inversion caused by the depen-
dence of the fluence on absorption in Eq. (2) should not be con-
fused with nonlinearities that appear in at least two other settings
related to PA imaging. Wang et al.109 observed the nonlinear
dependence of a PA signal amplitude on absorption coefficient
because of the bandlimiting effect of the detector, suggesting
that broadband detectors should be used for quantitative PA ima-
ging. Paltauf et al.110 point out that the ultrasonic attenuation
will also have a bandlimiting effect that could result in a similar
nonlinear dependence. Despite using a broadband detector,
Karabutov et al.111,112 noticed the nonlinear dependence of
the PA signal on absorption coefficient for a beam incident on
a nonscattering medium. As the absorption coefficient increases,
the characteristic length of the absorbed energy distribution,
1∕μa reduces until it is less than the distance the PA wave
can travel during the laser pulse, and the stress confinement con-
dition no longer holds. Danielli et al.113 used the nonlinear PA
response from an absorber owing to optical saturation to deter-
mine relaxation times on the picosecond timescale.

6.3 PA Generation Efficiency

The PA generation efficiency is the thermodynamic constant
connecting the acoustic and the optical inversions, labeled Γ̂
in Figs. 1 and 2. It plays a critical role in the generation of

PA signals and is therefore relevant to QPAI. Following the
absorption of a photon, the energy in the excited absorbing
molecule will be redistributed between the various vibrational
and other modes of that molecule and neighboring molecules
in a variety of processes grouped under the term thermalization.
The localized increase of heat will lead to perturbations in the
local temperature T 0, pressure p 0, and density ρ 0. The efficiency
of the PA effect indicates the size of the pressure increase that
accompanies thermalization, which will depend on the local
microenvironment of the absorbing molecule.

6.3.1 Grüneisen Parameter

In an absorbing fluid, the PA efficiency Γ̂ can be related to the
Grüneisen parameter, Γ, which is a thermodynamic property of a
material. Consider the case in which the absorbed power density,
H, the rate at which the optical energy is absorbed per unit
volume per unit time, is separable so Hðx; tÞ ¼ HðxÞf ðtÞ,
where H is the absorbed energy density and f ðtÞ is a temporal
shape function with unit integral. Some of the absorbed
energy will be used doing work (changing the mass density),
and the remainder will become heat and lead to a change in tem-
perature. The balance between these two will determine the
size of the PA effect: the less energy used to do work, the greater
will be the increase in temperature and corresponding increase
in pressure.

In fluid with homogeneous thermodynamic properties, the
rates of change of the local temperature pressure, and density
may be related by

∂p 0

∂t
¼

�
1

ρkT

�
∂ρ 0

∂t
þ
�
β

kT

�
∂T 0

∂t
; (64)

where ρ is the ambient mass density, kT is the isothermal com-
pressibility, and β is the volume thermal expansivity of the fluid.
For a sufficiently short pulse, f ðtÞ, the density will not have time
to decrease and j∂ρ 0∕∂tj ≪ j∂T∕∂tj, which is sometimes called
stress confinement. Under this isochoric condition the rate of
increase in pressure can be written ∂p 0∕∂t ¼ ½ðβ∕kTÞ∂T 0�∕∂t.
The rate at which the temperature increases is given by
∂T 0∕∂t ¼ H∕ρCv, where Cv is the specific heat capacity at con-
stant volume. The rate at which the local pressure rises can now
be related to the absorbed optical power density by

∂p 0

∂t
¼

�
β

ρCvkT

�
Hðx; tÞ ¼ ΓHðxÞf ðtÞ; (65)

where Γ ¼ β∕ðρCvkTÞ is the Grüneisen parameter. (An equiva-
lent expression is Γ ¼ βc20∕Cp, where Cp is the specific heat
capacity at constant pressure, c0 ¼

ffiffiffiffiffiffiffiffiffiffi
Bs∕ρ

p
is the sound

speed, and Bs ¼ ðCp∕CvÞ∕kT is the isentropic bulk modulus.)
The total increase in pressure (referred to as the initial acoustic
pressure distribution) can be obtained by integrating over the
duration of the optical pulse to get

p0 ¼ ΓH: (66)

Equation (66) is a special case of Eq. (1) that only has mean-
ing when the absorber and the propagation medium have the
same thermodynamic properties. Even with this proviso there
will be conditions under which the PA efficiency will not
equal the Grüneisen parameter. If there is significant radiative
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decay (e.g., fluorescence) following the absorption, or if the iso-
choric assumption ∂ρ 0∕∂t ≪ ∂T 0∕∂t does not hold, then Γ̂ < Γ.
The latter will be true in pulses for which H is small (energy is
delivered to the tissue slowly), allowing the density to change on
a timescale similar to the temperature.

6.3.2 PA efficiency for particle suspensions

When the absorption is due to solid inclusions such as nanopar-
ticles, with different material properties to the surrounding fluid,
the PA efficiency cannot in general be simply related to the
Grüneisen parameter of either material. The PA signal will
arise from heating of the fluid surrounding the inclusions by
heat conduction from the inclusions. In other words, rather
than heating the fluid directly through the absorption of light,
there is an intermediate stage: the light is absorbed by the
solid inclusion and the heat is then transferred to the fluid.

The expansion of the particles themselves will be a second
order effect because although the temperature rise of the inclu-
sions themselves can be greater than for the fluid case (as the
specific heat capacity tends to be lower in solids than fluids), the
stress generated and expansion of the particles is small. This is
because not only is the thermal expansivity is typically smaller
in solids than fluids, but the density and bulk modulus are typi-
cally larger.

Whereas for an absorbing fluid the rate of heat deposition is
the key factor determining the efficiency of the PA effect, in this
case it is the rate at which the heat conducts into the fluid and not
the rate at which it is deposited in the solid particles that is
significant. The thermal resistance, rather than Grüneisen
parameter, becomes the main physical parameter controlling
the efficiency of the PA generation.114 It has been shown that
this rate can be increased for gold nanoparticles by coating
them with silica, thereby increasing Γ̂ and the magnitude of
the PA signal.115

6.3.3 PA efficiency in quantitative PA imaging

Many of the inversion procedures in Secs. 3 through 5 assume
that the PA efficiency is known and therefore take the absorbed
energy density H as a starting point, but there are exceptions.
Zemp et al.,86,45 Guo et al.,52 and Bal et al.44,104 use ratios of
two measurements, one result of which is to cancel out the
PA efficiency. Another way around the problem of not knowing
Γ̂ is to recover it simultaneously with the chromophore concen-
trations and scattering. Bal and Ren104 have shown in the single-
wavelength case that when the light propagation obeys the DA,
two measurements are insufficient to allow the absorption and
scattering coefficients as well as the PA efficiency to be recov-
ered, although Shao et al. do this in a linearized version of the
problem.45

6.3.4 Tissue- or chromophore-dependent PA efficiency

Sometimes the PA efficiency for tissue is assumed to be a con-
stant, so that the initial pressure distribution is directly propor-
tional to the absorbed energy density with the same constant
of proportionality throughout the tissue, p0ðxÞ ¼ Γ̂HðxÞ. How-
ever, Γ̂ may take different values in different tissue types:
the Grüneisen parameter of blood has been measured to be65

ΓðbloodÞ ¼ 0.14, while in liver samples on average116

ΓðliverÞ ¼ 0.12, which is greater than 15% difference. (For
comparison, ΓðwaterÞ ¼ 0.11.) If a contrast agent is used, it

is even more likely that the PA efficiency will vary spatially,
Γ̂ ¼ Γ̂ðxÞ. Putting this spatial dependence into Eqs. (1) and (6)
gives an expression for the initial pressure distribution as

p0 ¼ Γ̂ðxÞΦðx; λÞ
XK
k¼1

CkðxÞαkðλÞ: (67)

Laufer et al.117 suggest there may be a different PA efficiency
for each chromophore which depends on that chromophore’s
concentration, Γ̂k ¼ Γ̂k½CkðxÞ�. The initial pressure distribution
then becomes

p0 ¼ Φðx; λÞ
XK
k¼1

Γ̂kCkðxÞαkðλÞ: (68)

In this case, the algorithms of Secs. 3 to 5 could be used to
estimate the product Γ̂kCk for each chromophore, rather than
the concentration Ck . If Γ̂k is known for the chromophores of
interest, then its concentration can be recovered; it is not neces-
sary to know Γ̂k for every chromophore present.

7 Conclusion
Many different inversion schemes have been presented for quan-
titative photoacoustic imaging, each of which makes different
assumptions and will therefore have a different region of applic-
ability. The differences are in several different directions; for
example, between those schemes that assume a 1-D system
and those that can incorporate the full complexity of 3-D;
between those that are ad hoc, and therefore quite specific to
a given scenario, and those of more generally applicability;
between linearized and fully nonlinear models; between those
that are computationally intensive and those whose efficiency
will allow them to be extended to large scale inversions for
high resolution images; and between those that assume the opti-
cal scattering is known and those for which it is inverted along
with the chromophore concentrations. Some methods such as
the single-point estimation of sO2 in an isolated blood vessel
are very specific but may well find a practically useful niche.
Other methods, such as the multiwavelength gradient-based
inversions, are more general and therefore look like more
promising candidates for solving the complete problem of
separating several spatially varying concentrations and scatter-
ing distributions.

Many of the methods described, particularly those in Sec. 6,
have only been tested in simulation (and that often only in 2-D),
and it is not at all clear which will be the most robust to the
uncertainties that will be found in practice (such as in the
“known” model parameters: detector positions, illumination
beam dimensions and profile, absorption spectra, as well as
to image artifacts and noise) or what other hurdles will become
apparent when implementing them in practice. There is there-
fore a pressing need for these models to be tested under realistic
conditions and with real data sets.

Others schemes, such as some of the single-point techniques
that have been used to measure sO2, have been used for in vivo
measurement but without sufficient prior testing in phantom
experiments and simulations to show where their assumptions
break down. More testing and rigorous validation with realistic
phantoms would give greater confidence that the in vivo results
are quantitatively correct. There is an urgent need to ensure that
these techniques are valid, accurate, and robust in the settings
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in which they will be used, especially those that have been
proposed for use in clinical applications.
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