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Abstract. A new, freely available third party MATLAB toolbox for the
simulation and reconstruction of photoacoustic wave fields is de-
scribed. The toolbox, named k-Wave, is designed to make realistic
photoacoustic modeling simple and fast. The forward simulations are
based on a k-space pseudo-spectral time domain solution to coupled
first-order acoustic equations for homogeneous or heterogeneous me-
dia in one, two, and three dimensions. The simulation functions can
additionally be used as a flexible time reversal image reconstruction
algorithm for an arbitrarily shaped measurement surface. A one-step
image reconstruction algorithm for a planar detector geometry based
on the fast Fourier transform ~FFT! is also included. The architecture
and use of the toolbox are described, and several novel modeling
examples are given. First, the use of data interpolation is shown to
considerably improve time reversal reconstructions when the mea-
surement surface has only a sparse array of detector points. Second,
by comparison with one-step, FFT-based reconstruction, time reversal
is shown to be sufficiently general that it can also be used for finite-
sized planar measurement surfaces. Last, the optimization of compu-
tational speed is demonstrated through parallel execution using a
graphics processing unit. © 2010 Society of Photo-Optical Instrumentation Engineers.
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1 Introduction

Photoacoustic tomography sPATd is a noninvasive biomedical
imaging modality that allows the in vivo visualization of em-

bedded light absorbing structures.
1
The technique works by

externally illuminating a tissue sample with short pulses of

visible or near-infrared sNIRd laser light. The localized ab-

sorption of this light sparticularly by the hemoglobin chro-

mophores present in bloodd produces broadband ultrasonic

waves via thermoelastic expansion. By measuring the ultra-

sonic waves that propagate back to the tissue surface, images

of the initial photoacoustic pressure swhich is related to the

absorbed optical energy distributiond can then be recon-

structed. These images may be used to quantify tissue

properties,
2,3

or to identify pathological structures.
4
The tech-

nique has been demonstrated via high-resolution in vivo im-

aging of vasculature in both small animals
5,6

and humans.
7

Similar images may also be formed using microwave frequen-

cies san analogous technique often called thermoacoustic to-

mographyd, where water is the primary absorber.8

The continued development of PAT sfor quantitative imag-
ing, for exampled is in part contingent on a detailed under-

standing of the parameters that affect the reconstructed pho-

toacoustic image, including the optical, thermal, and acoustic

properties of the tissue; the arrangement and characteristics of

the excitation laser source; the arrangement and characteris-

tics of the ultrasound sensors; and the assumptions and limi-

tations of the numerical reconstruction algorithm. To this end,

the simulation of PAT can provide both qualitative and quan-

titative insight into the contribution of these parameters, in-

cluding the effect of their perturbation and the optimization of

their values. Conceptually, the PAT modeling problem can be

divided into two components: optical and acoustic. Consider-

ing the acoustic element, simulation models are also integral

for the generation of numerical phantom data,
9
for the devel-

opment of image reconstruction algorithms,
10,11

and for use

within iterative reconstruction routines.
12

It is the develop-

ment of fast, accurate, easy-to-use, and tissue-realistic meth-

ods for modeling photoacoustic wave fields si.e., the acoustic
component of the PAT modeling problemd that is the subject
of interest here.

The principle requirement for the development of acoustic

models for PAT is simply that the underlying assumptions of

the governing equations are also satisfied in the acoustic en-

vironments relevant to the modality. Within soft tissue, the

sound speed and density are related to the relative proportions

of water, proteins ssuch as collagen and hemoglobind, and
lipids, and are thus inherently heterogeneous.

13
A high protein

content causes the sound speed and density to be higher than
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those in water se.g., bloodd, while a high lipid content causes
them to be lower se.g., fatd.14 For layered media such as hu-

man skin swhere the collagen-rich dermis overlies a layer of

subcutaneous fatd, this necessitates heterogeneous distribu-

tions of sound speed, density, and acoustic absorption. How-

ever, there is a distinct disparity between these requirements

and current simulation and reconstruction techniques used for

PAT. Most approaches assume a homogeneous distribution of

acoustic properties and a nonabsorbing medium. Moreover,

simulation models based on finite-difference sFDd time do-

main solutions to the wave equation that do facilitate these

inclusions become computationally formidable for modestly

large three-dimensional s3-Dd domains.
Here, the architecture and use of a new third party toolbox

for MATLAB sMathWorks, Inc., Natick, Massachusettsd de-
veloped for the simulation and reconstruction of photoacous-

tic wave-fields is described. The toolbox, named k-Wave, is

freely available at http://www.k-wave.org, and includes:

• An easy-to-use time domain forward model of acoustic

wave propagation for acoustically heterogeneous media

with power law absorption.

• The ability to model arbitrary detection surfaces with

directional elements.

• The option to use the forward model as a flexible time

reversal image reconstruction algorithm for an arbitrary

measurement surface.

• A fast one-step image reconstruction algorithm for data

recorded on a linear s2-Dd or planar s3-Dd measurement
surface.

• Optional input parameters to adjust visualization and

performance, including options to make a wave propa-

gation movie for use in presentations and to run the

simulations on the graphics processing unit sGPUd.
• Many simple-to-follow tutorial examples to illustrate the

capabilities of the toolbox.

The governing photoacoustic equations and their applica-

tion to photoacoustic simulation and reconstruction are dis-

cussed in Sec. 2. The k-space pseudo-spectral sPSd solution
method and the use of a perfectly matched layer are also

described. In Sec. 3, the k-Wave toolbox is introduced and

many of the included functions are illustrated and discussed.

In Sec. 4, several novel simulation and reconstruction ex-

amples are presented, including the use of data interpolation

for sparse detector arrays; a comparison of time reversal and

one-step, fast Fourier transform sFFTd–based image recon-

struction algorithms; and performance enhancements via data

casting and parallelization using the GPU. A summary and a

discussion of future work are given in Sec. 5.

2 Modeling Photoacoustic Wave Propagation

2.1 Photoacoustic Wave Equation

In PAT, a spatially dependent ultrasound signal is generated

by illuminating a turbid medium with short pulses of visible

or infrared laser light. Within soft biological tissue at these

optical wavelengths, embedded chromophores such as mela-

nin and hemoglobin preferentially absorb the light and un-

dergo thermoelastic expansion, producing both thermal and

acoustic waves. The resulting heat diffusion occurs on a time

scale much longer than the acoustic propagation time shun-
dreds of milliseconds compared to microsecondsd, which in

turn is much longer than the time scale for the heating laser

pulse stypically, on the order of nanosecondsd. For the acous-
tic propagation, heat conduction can thus be neglected and the

governing acoustic equations reformulated as an initial value

problem.
15

For a given light fluence, the initial photoacoustic pressure

distribution is related to the spatially dependent optical, ther-

mal, and acoustic properties of the medium.
16
For PAT in vivo,

this initial pressure is typically on the order of 10 kPa. Ac-
cordingly, the time evolution of photoacoustic wave fields can

be modeled using the equations of linear acoustics. For soft

biological tissue, it can also generally be assumed that the

propagation medium is isotropic and quiescent, that the pres-

sure flow is irrotational, and that shear waves can be ne-

glected. In a lossless medium, the appropriate equation of

motion, equation of continuity, and equation of state can then

be written as
17

]u

]t
= −

1

r0
¹ p ,

]r

]t
= − r0 ¹ · u ,

p = c2r , s1d

where the initial conditions are given by

p0 = GmaF ,

]p0

]t
= 0. s2d

Here, u is the acoustic particle velocity, r0 is the ambient

density, r is the acoustic density, c is the thermodynamic

sound speed, p is the acoustic pressure, p0=pst=0d is the

initial photoacoustic pressure distribution, G is the Grüneisen

parameter sthe proportionality constant between the absorbed

light and the initial pressured, ma is the optical absorption

coefficient, and F is the light fluence, all of which may be

spatially varying. These equations are often combined to give

a single second-order photoacoustic wave equation.
15
Using

this framework, it is straightforward to modify the adiabatic

equation of state to account for acoustic absorption
18
or non-

linear effects.
19

2.2 Pseudo-Spectral and k-Space Methods

The most commonly used numerical methods for solving par-

tial differential equations in acoustics are the finite-difference,

finite-element, and boundary-element methods. Although ex-

cellent for many applications, for time domain modeling of

broadband or high-frequency waves, they can become cum-

bersome and slow. This is due to the requirements for many

grid points per wavelength and small time-steps to minimize

unwanted numerical dispersion. The PS method swhich rep-

resents an extension of the FD methodd can help reduce the

first of these problems, and the k-space approach can help to

overcome the second.
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In a simple FD scheme, the gradient of the field is esti-

mated using linear interpolation between its values at the grid

points si.e., the mesh nodesd. A better estimate of the gradient

can be obtained by fitting a higher-order polynomial to a

greater number of nodes and calculating the derivative of the

polynomial. The more points used, the higher the degree of

polynomial required, and the more accurate the estimate of

the derivative. The PS method takes this idea further and fits a

Fourier series to all of the data; it is therefore sometimes

referred to as a global, rather than local, method. There are

two significant advantages to using Fourier series: first, the

amplitudes of the Fourier components can be calculated effi-

ciently using the FFT, and second, the basis functions are

sinusoidal, so only two nodes per wavelength are required,

rather than the six to ten required in other methods.
20,21

While the PS method improves efficiency in the spatial

domain, conventional FD schemes are still necessary to cal-

culate the gradients srates of changed in the time domain. The
FD approximation introduces instability into the numerical

simulation that can only be controlled by limiting the size of

the time-step. The techniques broadly classed as k-space

methods attempt to relax this limitation in order to allow

larger time-steps to be used without compromising accuracy.

By comparing a simple PS time domain model for acousti-

cally homogeneous media to an exact solution to the corre-

sponding homogeneous wave equation, it is possible to find

replacement expressions for either the temporal or the spatial

derivative such that the numerical solutions are exact for ar-

bitrarily large time-steps.
22–25

In effect, this substitution incor-

porates a priori information about the form of the derivative

specific to the governing wave equation. These k-space ad-

justments also lead to improved numerical stability in the case

of acoustically heterogeneous media. For the range of hetero-

geneity evident in soft biological tissue, this allows the use of

much larger time steps for the same degree of accuracy. A

detailed error analysis of the implemented k-space technique

is provided by Tabei et al.,
23
and an experimental validation of

k-space methods for photoacoustics is given by Cox et al.
26

2.3 Perfectly Matched Layer

The simulation of propagating wave fields using a finite-sized

computational grid requires an efficient numerical scheme to

compute the derivatives near the grid boundaries. For PS or

k-space methods, the computation of the spatial derivatives

via the FFT causes waves leaving one side of the domain to

reappear at the opposite side. This wave wrapping can be

avoided by implementing an absorbing boundary condition

known as a perfectly matched layer sPMLd.27,28 This is a thin
absorbing layer that encloses the computational domain and is

governed by a nonphysical set of equations, causing aniso-

tropic attenuation. The use of a PML requires the propagating

density or pressure to be artificially divided into Cartesian

components, i.e., r=rx+ry+rz. The absorption is then de-

fined such that only components of the wave field traveling

within the PML and normal to the boundary are absorbed.

Including a PML, the first-order acoustic equations given in

Eq. s1d become23,24

]u

]t
= −

1

r0
¹ p − a · u ,

]rx

]t
= − r0

]ux

]x
− axrx,

p = c0
2 o rx,y,z, s3d

where the second equation is repeated for each Cartesian di-

rection. Here a= hax ,ay ,azj is the anisotropic absorption in

Nepers per meter, which is only nonzero within the PML. The

performance of the PML is dependent on both the size and

attenuation of the layer, as well as the time-step used in the

simulation.
29
When the PML is implemented effectively, it is

possible to simulate infinite domain propagation in k-space

using only a small computational grid.
23,24

2.4 Staggered Grids

The numerical solution of Eq. s3d is computed in several steps
ssee Fig. 1d. First, the pressure distribution within the compu-
tational domain is used to calculate the spatial derivatives

]p /]x, ]p /]y, and ]p /]z. These are used to update the cor-

responding velocity terms using a first-order FD. sComputa-
tionally, the k-space adjustments for the FD calculation of the

temporal derivative are actually made using a modified

Laplacian operator, i.e., within the computation of the spatial

derivatives.
24d Next, the spatial derivatives of the velocity for

each Cartesian direction are computed. These are used to up-

date the values of the acoustic density within the domain,

again using a first-order FD. Last, the pressure is computed

using the appropriate equation of state.

For both FD and k-space sor PSd methods, additional ac-
curacy, and therefore stability, can be obtained when comput-

ing odd-order derivatives by using staggered spatial and tem-

poral grids.
23,30

In this case, the positions where the governing

equations are discretized need not coincide with the positions

where the function values are available.
31
Figure 1 illustrates

the use of staggered grids in 2-D for a computation using the

coupled acoustic equations given in Eq. s3d. The grid stagger-

ing means that a local change in p will immediately affect the

adjacent particle velocities. sThis is not the case for nonstag-
gered grids.

23d The calculations for the particle velocity and

its derivatives are also staggered temporally, which minimizes

(b)

(a)

p

∂p/∂x

∂p/dz

u
x

u
z

∂u
x
/∂x

∂u
z
/dz

ρ
x
, ρ

z

(a)

(b)

(a)

(b)

Fig. 1 Schematic showing the computational steps in the solution of
the coupled first-order acoustic equations for heterogeneous media
using a staggered spatial grid. The superscripts ~a! and ~b! denote the
parameters calculated on the x and z staggered grids, respectively.
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errors when using low-order FD methods to compute the tem-

poral derivative. A more detailed description of the computa-

tional methodology implemented in k-Wave can be found in

Refs. 23 and 24.

2.5 Time Reversal Image Reconstruction

The computational challenge in PAT is to reconstruct an esti-

mate of the initial photoacoustic pressure distribution p0 given

a set of time varying measurements of the acoustic pressure

pS recorded over an arbitrary surface S for some time t=0 to

T. In time reversal image reconstruction, this estimate is ob-

tained by using the recorded measurements of pS in time re-

versed order as a time varying Dirichlet boundary condition

imposed at the position of the detectors on the measurement

surface.
11,32–34

The time evolution of the wave field propagat-

ing into the domain from the imposed boundary condition is

calculated using a forward propagation model with zero initial

conditions. The reconstruction is then given as the acoustic

pressure within the domain after time T. As the time reversal

reconstruction is dependent on a forward propagation model,

it is straightforward to include heterogeneities into the recon-

struction simply by using the appropriate model. This choice

will similarly dictate the speed and accuracy of the time re-

versal reconstruction.

2.6 One-Step Image Reconstruction for a Planar
Measurement Surface

For an acoustically homogeneous medium, if the measure-

ment surface is planar, a much faster reconstruction algorithm

is available that calculates the initial pressure distribution in a

single step si.e., without the need for time iterationsd.35,36 The
algorithm works by mapping the time domain information of

the measured data srecorded as a function of time and 2-D

position on the planed into a third spatial dimension. This

mapping is performed by relating the temporal and spatial

frequency information in the depth direction via a dispersion

relation.
37

If the pressure pSsx ,y , td recorded over a planar

measurement surface S is forced to be symmetrical about

t=0, the reconstruction can be computed efficiently simply

using interpolation and the Fourier transform:

p0skx,ky,vd =
c2kz

2v
Fx,y,t hpSsx,y,tdj ,

p0skx,ky,vd → p0skx,ky,kzd ,

p0sx,y,zd = Fx,y,z
−1 hp0skx,ky,kzdj , s4d

Here, kx, ky, and kz are the spatial wave number components

in each Cartesian direction, v is the temporal frequency,

→ represents the interpolation step, and F and F −1 represent

the forward and inverse Fourier transforms, respectively. It is

assumed that the evanescent region of wave numbers is ex-

cluded in the Fourier transform over the t-dimension.
15

In

practice, this is achieved by setting the values of p0skx ,ky ,vd

to zero wherever v2
/c2,kx

2+ky
2. The interpolation between

the temporal and spatial frequencies v and kz is then com-

puted using the dispersion relation kz
2= sv /cd2−kx

2−ky
2. The

method used for this interpolation can affect both the accuracy

and the speed of the reconstruction.
38

Note that, numerically, an additional scaling factor of 4 /c

must also be applied to the final reconstructed amplitude. This

accounts for the difference in spacing between the forward

and inverse FFT for the interpolated coordinate sdt versus dzd,

the inherent assumption that p0 is symmetrical about z, and

the fact that the planar measurement surface necessarily lies

on only one side of the measurement domain and therefore

does not detect waves propagating in the opposite direction.

The use of the FFT to compute the Fourier transformation

steps of Eq. s4d means that the reconstruction will be fastest

when both the number of time samples and the number of

detector points are powers of 2.

3 The k-Wave Toolbox

3.1 Overview of Functions

The k-Wave toolbox is designed to make photoacoustic mod-

eling easy and fast. The functions included within the toolbox

can be divided into four broad categories:

• The simulation of photoacoustic sor ultrasonicd wave

fields.

• The reconstruction of photoacoustic images.

• The creation of geometric shapes.

• Utility and system functions.

The simulation functions compute the time evolution of an

acoustic wave field within homogeneous or heterogeneous

media in either 1-, 2-, or 3-D. The computations are based on

a k-space solution to coupled acoustic equations as discussed

in Sec. 2. These functions can also be used for time reversal

image reconstruction. The additional image reconstruction

functions allow the initial photoacoustic pressure to be esti-

mated from data recorded over a linear s2-Dd or planar s3-Dd
measurement surface. The geometry creation functions allow

both Cartesian- and grid-based geometries to be defined, in-

cluding circles, arcs, disks, spheres, shells, and balls. The

Cartesian-based functions return the geometric coordinates of

the particular shape, while the grid-based functions return a

binary matrix si.e., matrix of 1s and 0sd where the 1s corre-
spond to the location of shape. The utility functions are used

to perform additional tasks such as grid creation, matrix

smoothing, matrix interpolation, file loading, etc. Examples of

using many of the functions within the toolbox are given in

the following sections.

3.2 Time-Domain Simulation of Photoacoustic Wave
Fields

Figure 2 illustrates the computational architecture of the simu-

lation functions based on the coupled first-order acoustic

equations given in Eq. s3d skspaceFirstOrder1D,
kspaceFirstOrder2D, and kspaceFirstOrder3Dd.
The functions are given information about the discretization

of the propagation medium, its acoustic properties, the initial

sor time varyingd pressure distribution, and the location and

characteristics of the measurement surface that detects the ul-

trasonic wave field. These properties are assigned as fields

within four input structures; kgrid, medium, source,

and sensor ssee Table 1d. The propagation of the wave field
through the medium is then computed step by step, with the

pressure values at the sensor elements stored after each itera-
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tion. These values are returned when the time loop has com-

pleted. A simple example of a 2-D simulation in a heteroge-

neous layered medium is given here s1-D and 3-D simulations

are performed in an analogous fashiond:

% create the computational grid

Nx = 256;

Nz = 128;

dx = 50e−6;

dz = 50e−6;

kgrid = makeGrid(Nx, dx, Nz, dz);

% define the medium properties

medium.sound_speed = 1500pones(Nz, Nx);

medium.sound_speed(1:50,:) = 1600;

medium.density = 1000pones(Nz, Nx);

medium.density(1:50,:) = 1040;

% define the initial pressure

disc_x_pos = 120;

disc_z_pos = 75;

disc_radius = 8;

disc_mag = 3;

source.p0 = disc_mag*makeDisc(Nx, Nz,

disc_xpos, disc_z_pos, disc_radius);

% define a centered circular sensor

sensor_radius = 2.5e−3;

num_sensor_points = 50;

sensor.mask = makeCartCircle(sensor_ra

dius, num_sensor_points);

% run the simulation

sensor_data = kspaceFirstOrder2D(kgrid,

medium, source, sensor);

The medium discretization is performed using the utility

function makeGrid. The size sdx, dzd and number sNx, Nzd
of pixels in each Cartesian direction are used to calculate the

Cartesian and k-space discretizations, and a k-Wave grid

structure kgrid encapsulating this information is returned.

The discretizations are calculated to satisfy the requirements

of the FFT-based spatial derivatives. This structure is used

extensively by both the simulation and utility functions within

k-Wave. The time-steps used in the simulation are defined by

kgrid.t_array, which is set to ‘auto’ by makeGrid. In

this case, the time array is automatically calculated within the

simulation functions using the utility function makeTime

based on the size and properties of the k-space grid and sen-

sible stability criterion fa Courant-Friedrichs-Lewy stability

value of 0.3 sRef. 23dg.
For a homogeneous medium, medium.sound_speed

and medium.density are given simply as scalar values.

For a heterogeneous medium, these are given as Nz3Nx ma-

trices with arbitrary numeric values. The initial photoacoustic

pressure distribution source.p0 is similarly defined as an

Nz3Nx matrix. The measurement surface sensor.mask is

given either as a binary grid si.e., an Nz3Nx matrix of 1s and

0sd representing the pixels within the computational grid that

will collect the data, or as a 23N matrix of Cartesian coor-

dinates where the pressure values are calculated at each time-

step using interpolation. Note, in 3-D, the input matrices are

instead Nz3Nx3Ny in size, and the Cartesian sensor points

are given by a 33N matrix. For the example given here, the

geometric function makeDisc is used to define an initial

pressure distribution of a small filled disk, while

makeCartCircle is used to define a Cartesian sensor mask

with a set of evenly spaced points on a circle.

The simulation is invoked by calling

kspaceFirstOrder2D with the inputs described earlier.

By default, a visualization of the propagating wave field and a

status bar are displayed, with frame updates every 10 time-

steps. The default k-Wave color map displays positive pres-

sures as yellows through reds to black, zero pressures as

white, and negative pressures as light to dark blue-greys. A

screen shot of the k-Wave simulation example coded earlier is

shown in Fig. 3. The circular sensor mask, the absorption

within the lower PML, and a small reflection from the layered

sound speed and density interface are all clearly visible. As

the function runs, status updates and computational param-

eters are printed to the command line. When the time loop has

completed, the function returns the time series recorded at the

detector locations defined by the sensor mask ssee Fig. 4d. If
the sensor mask is given as a set of Cartesian coordinates, the

computed sensor_data is returned in the same order. If

the sensor mask is given as a binary grid, sensor_data is

returned using MATLAB’s standard column-wise linear index

ordering. In both cases, the recorded data is indexed as sen-

sor_data(sensor position, time). For a binary

sensor mask, the pressure values at a particular time can be

restored to the sensor positions within the computational grid

using the utility function unmaskSensorData.

Additional properties of the medium, source, and sensor

can be assigned using the remaining structure fields ssee Table
1d. For example, arbitrary power law absorption can be as-

signed using medium.alpha_power and medium.al-

pha_coeff, sensor directivity can be specified using sen-

sor.directivity_angle and

sourcekgrid sensor

sensor_data

kspaceFirstOrderND

medium

c / ρ

Fig. 2 Schematic of the architecture of the simulation functions within
the k-Wave toolbox that are based on coupled first-order acoustic
equations for heterogeneous media.
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sensor.directivity_size, and a time varying source

can be used by defining source.p and source.p_mask.

3.3 Optional Input Parameters

The behavior of the simulation functions within the k-Wave

toolbox can be controlled through the use of optional input

parameters. These are given as param, value pairs follow-

ing the primary function inputs. For example, the visualiza-

tion can be automatically saved as a movie by setting ‘Re-

cordMovie’ to true. Similarly, a plot of the initial

pressure distribution, sensor mask, and medium properties can

be automatically generated by setting ‘PlotLayout’ to

true; the properties of the PML can be controlled using

‘PMLSize’, ‘PMLAlpha’, and ‘PMLInside’; the interpo-

lation method used to calculate the pressure values on a Car-

tesian sensor mask can be set using ‘CartInterp’; and the

smoothing of input matrices can be controlled via ‘Smooth’.

Detailed descriptions of the functions and their usage are

given in the html help files and examples included within the

toolbox.

3.4 Time Reversal Image Reconstruction

The first-order k-Wave functions already described for the

simulation of photoacoustic wave propagation can also be

used for photoacoustic image reconstruction by assigning the

time varying pressure recorded over the detector array to

sensor.time_reversal_boundary_data. This pres-

sure is then enforced, in time reversed order, as a Dirichlet

boundary condition over the given sensor mask. If the sensor

mask is given as a set of Cartesian coordinates, then the sen-

sor data, indexed as sensor_data(sensor position,

time), must be given in the same order. An equivalent grid-

based sensor mask computed using nearest-neighbor interpo-

lation is then used to enforce the boundary condition within

the computational grid at each time-step. If the sensor mask is

instead given as a binary grid, the sensor data must be ordered

using MATLAB’s standard column-wise linear matrix index-

ing.

An example of using k-Wave to compute a 2-D time re-

versal image reconstruction is given below. By passing the

sensor data returned from a k-space forward simulation di-

rectly to sensor.time_reversal_boundary_data

and then calling kspaceFirstOrder2D, it is straightfor-

ward to simulate the measurement and reconstruction process.

sNote, in this simple example, the “inverse crime” is commit-

ted in which the same numerical parameters are used for both

simulation and reconstruction.d When using the simulation

functions in time reversal mode, the array of time points

kgrid.t_array must be explicitly defined. This array is

created here using the utility function makeTime sthe same

function that is called internally by the first-order simulation

codes when kgrid.t_array is set to ‘auto’d:

Table 1 Summary of the input structure fields for the first-order k-Wave simulation functions. The fields
that are required for a photoacoustic forward simulation are marked with an asterisk s* d. By default,

makeGrid sets kgrid.t_array to ‘auto’.

Field Description

kgrid.k, kgrid.Nx, kgrid.dx, etc.* Cartesian and k-space grid fields returned by
makeGrid

kgrid.t_array* Simulation time array

medium.sound_speed* Sound speed distribution

medium.density* Ambient density distribution

medium.alpha_power Power law absorption exponent

medium.alpha_coeff Power law absorption coefficient

source.p0* Initial pressure distribution

source.p Time varying pressure source distribution

source.p_mask Binary grid specifying the positions of the time
varying pressure source distribution

sensor.mask* Binary grid or set of Cartesian points where the
pressure is recorded

sensor.time_reversal_boundary_data Time varying pressure enforced as a Dirichlet
boundary condition over sensor.mask

sensor.time_reversal_adapt_thresh Adaptive boundary condition threshold

sensor.directivity_angle Direction of maximum response

sensor.directivity_size Equivalent element size
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% create the time array

kgrid.t_array = makeTime(kgrid,

medium.sound_speed);

% run the forward simulation

sensor_data = kspaceFirstOrder2D(kgrid,

medium, source, sensor);

% reset the initial pressure

source.p0 = 0;

% assign the time reversal data

sensor.time_reversal_boundary_data =

sensor_data;

% run the time reversal reconstruction

p0_recon = kspaceFirstOrder2D(kgrid,

medium, source, sensor);

3.5 One-Step Image Reconstruction

If the measured data is recorded using a linear s2-Dd or planar
s3-Dd detector array, a fast one-step, FFT-based image recon-
struction can be performed using the functions kspaceLi-

neRecon and kspacePlaneRecon. Here, the time series

data input must be indexed as p_txy(time, sensor x

position, sensor y position) in 3-D or p_tx-

(time, sensor position) in 2-D, where the sensor

spacing is given by dx and dy, the temporal spacing is given

by dt, and the sound speed in the propagation medium

swhich is assumed to be acoustically homogeneousd is given
by c. The reconstruction is then invoked by calling the func-

tion with the parameters described earlier. For example, in

3-D, the reconstruction is performed by calling:

p_zxy = kspacePlaneReconsp_txy, dx, dy, dt, cd;

where the output is indexed as p_zxy(z, x, y).

Regardless of the physical alignment of the sensor within

the acoustic medium, the reconstruction is always returned as

if the sensor was located across z=0 si.e., the first matrix

rowd. The resolution of the reconstruction in the x and y di-

rections is defined by the physical location and spacing of the

sensor elements, while the resolution in the z direction is de-

fined by sample rate at which the pressure field is recorded

si.e., dtd. The reconstructed initial pressure distribution will

thus typically have a much finer discretization in the z stimed
direction.

As the reconstruction relies on the interpolation between a

temporal and a spatial domain coordinate with different inher-

ent spacings, both the speed and accuracy of the reconstruc-

tion are dependent on the interpolation method used. This can

be controlled via the optional input parameter ‘Interp’,

which is passed directly to the MATLAB function interp3

sor interp2 in 2-Dd. By default, this is set to ‘pnearest’,
which optimizes the interpolation for speed. Setting ‘In-

terp’ to ‘plinear’ or ‘pcubic’ will reduce background

interpolation artifacts in the image at the expense of compu-

tational speed. A visualization of the reconstruction can also

be produced by setting the optional input parameter

‘PlotRecon’ to true. A positivity condition swhich sets

the negative parts of the reconstruction to zerod can similarly
be enforced by setting ‘PosCond’ to true.

4 k-Wave Simulation Examples

The application of the functions within the k-Wave toolbox is

illustrated in the following sections through several novel

simulation and reconstruction examples.

Fig. 3 Screen shot of a 2-D forward simulation in a heterogeneous
layered medium using the k-Wave toolbox. The circular sensor mask
utilized is shown as a series of small black pixels, and the progress of
the simulation is illustrated by the status bar. The anisotropic absorp-
tion within the perfectly matched layer ~PML! on the lower side of
domain is clearly visible. By default, the visualization is updated every
10 time-steps.
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Fig. 4 The time series recorded over a circular Cartesian sensor mask
for a 2-D forward simulation in a heterogeneous layered medium us-
ing the k-Wave toolbox. If the sensor mask is given as a set of Carte-
sian coordinates, the computed time series is returned in the same
order.
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4.1 Improving Time Reversal Image Reconstruction
Using Interpolated Sensor Data

In conventional time reversal image reconstruction, the re-

corded pressure time series are enforced in time reversed or-

der as a Dirichlet boundary condition at the position of the

detectors on the measurement surface. If a sparse array of

detector points is used to collect the measurements srather
than a continuous surfaced, the enforced time reversal bound-
ary condition will necessarily be discontinuous. This can

cause significant blurring in the reconstructed image, as illus-

trated in Fig. 5. Here the initial pressure distribution is given

by a 5123512 pixel s10310 mmd image representative of
vasculature sloaded using the utility function loadImaged.

The detector array ssensor.maskd is defined as a 270-deg

arc of radius 4.5 mm with 70 evenly spaced detector points.

The corresponding time array screated using makeTimed has

2226 time-steps of 4.24 ns. A plot of the initial pressure dis-

tribution ssmoothed using the utility function smoothd and
the sensor mask susing the utility function cart2grid to

place the Cartesian sensor points into the grid based imaged is
shown in Fig. 5sad.

The time reversal reconstruction using a different sized

4003400 pixel grid with 2.5% random uniform noise added

to the recorded sensor data before reconstruction sto avoid the

inverse crimed is shown in Fig. 5sbd. sThe displayed recon-

structions are shown with a positivity condition enforced.d

The edges of the original image have been significantly

blurred due to outgoing waves from each detector position on

the measurement surface interacting with other positions at

which a pressure value is also being enforced. This interaction

can be avoided by interpolating the recorded data onto a con-

tinuous srather than discreted measurement surface within the

k-space grid used for the reconstruction. This can be achieved

in k-Wave by using the utility function interpCartData

along with a binary sensor mask of a continuous surface that

is spatially equivalent to the original Cartesian measurement

surface sin this case, an arcd. This function calculates the time

series at the detector positions on the continuous binary sen-

sor mask from those on the Cartesian sensor mask via inter-

polation. sNearest neighbor is used by default.d

The reconstructed image using the interpolated sensor data

and sensor mask is shown in Fig. 5scd. The edges of the image
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Fig. 5 Two-dimensional time reversal reconstruction example for a sparse array of detector positions on an arc. ~a! Initial pressure distribution and
sensor mask; ~b! conventional time reversal reconstruction; ~c! time reversal reconstruction after interpolating the measurement data onto a
continuous sensor mask; and ~d! a profile through z=−0.5 showing the initial pressure ~dashed line!, conventional reconstruction ~solid line!, and
interpolated reconstruction ~dotted line!.
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are now considerably sharper. This is also evident in Fig. 5sdd,

which shows a profile through z=−0.5 mm. The junction be-
tween the main vessel and the right branch fthe first two peaks
visible in Fig. 5sddg is noticeably sharper after the interpola-

tion sdotted lined compared to before ssolid lined. The overall
magnitude of the reconstruction and the signal-to-noise ratio

have also been improved through partial correction for the

discontinuous aperture.

4.2 Comparison of Time Reversal and One-Step
Image Reconstruction for a Planar
Measurement Surface

Although time reversal image reconstruction is exact only for

a closed measurement surface in odd dimensions and homo-

geneous media sin which Huygens’ principle can be fulfilledd,
in practice, the technique has been successfully applied to

heterogeneous media, reconstructions in even dimensions, and

partially closed measurement surfaces.
34
Here, the use of time

reversal for finite-sized planar measurement surfaces is dem-

onstrated via comparison with the one-step, FFT-based recon-

struction algorithm. The utilized initial pressure distribution,

created using makeDisc within a 4723216 pixel grid with

a 20-pixel external PML, is shown in Fig. 6sad. The measure-
ment surface is defined as a linear array of 100 evenly

spaced Cartesian points along the line z=0 from

x=−4.5 to 4.5 mm. The corresponding time array screated

using makeTimed has 1610 time-steps of 7.45 ns.
The one-step, FFT-based reconstruction using ‘Interp’

set to ‘pcubic’ is shown in Fig. 6sbd. The corresponding

time reversal image reconstruction using a different sized

4003200 pixel grid with the recorded sensor data interpo-

lated onto a continuous sensor mask sas discussed in the pre-
vious sectiond is shown in Fig. 6scd. The magnitude of the

latter has been multiplied by 2 to account for the fact that the

planar measurement surface necessarily lies on only one side

of the measurement domain and therefore does not detect

waves propagating in the opposite direction. sThis scaling is

applied automatically within kspaceLineRecon and

kspacePlaneRecon.d

Aside from the inherent resolution difference in the x di-

rection sthe time reversal reconstruction utilizes a larger data
set due to the interpolation stepd, the two reconstructed im-

ages appear visually very similar. A z-profile through x=0 is

shown in Fig. 6sdd, which facilitates a more quantitative com-
parison. The time reversal reconstruction illustrates an im-

provement when the objects are close to the sensor surface

and is almost identical to the one-step FFT-based reconstruc-

tion when the objects are farther away. This raises three points

of particular interest. First, the similarity of the two recon-

structions suggests that the semicircular banding artifacts fre-

quently seen in reconstructions using the one-step, FFT-based

algorithm are largely due to limited aperture effects salthough
the method used for the interpolation step can also introduce

additional artefacts, particularly if nearest-neighbor interpola-

tion is usedd. Second, time reversal image reconstruction is

sufficiently general that it can also be used for open planar

measurement surfaces. From the results shown here, it seems

probable that time reversal image reconstruction is exact in

the case of an infinite plane. Third, the inherent inclusion of

the evanescent wave component in time reversal sthis is ex-

cluded in the one-step, FFT-based reconstructiond appears to
improve the amplitude of the reconstruction and reduce arti-

facts close to the sensor surface. Consequently, it may be

possible to improve one-step, FFT-based reconstructions by

also including the contribution of evanescent waves.

4.3 Optimizing k-Wave Performance

Although k-space methods have inherent computational ad-

vantages over analogous PS or FD methods, the overall com-
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putational efficiency is still dependent on the manner in which

the algorithms are encoded and executed. For a standard

k-Wave simulation, the majority of the computational time is

spent running forward and inverse FFT routines, along with

the point-wise multiplication of matrices. Additional time is

also spent preparing and displaying the animated visualiza-

tions, and, if a Cartesian sensor mask is used with linear in-

terpolation, precomputing the interpolation weights through

Delaunay triangulation. The time spent doing the latter can be

minimized by switching the visualization off by setting the

optional input parameter ‘PlotSim’ to false, and by using

either nearest-neighbour interpolation sby setting ‘CartIn-

terp’ to ‘nearest’d or a binary sensor mask. After these

modifications, the majority of the computational time is spent

completing the time-stepped calculation of spatial derivatives

via the FFT. It is possible to decrease this burden by capital-

izing on MATLAB’s use of overloaded functions for different

data types. For example, computing an FFT of a matrix of

single type takes less time than for double sthe standard
data format used within MATLABd. For most computations of
interest here, the loss in precision as a result of doing the

computations in single type is negligible.

Within the k-Wave simulation functions, the data type used

for the variables within the time loop can be controlled via the

optional input parameter ‘DataCast’. A comparison of the

total time sincluding precomputationsd to run a 3-D forward

simulation with 1000 time-steps for a varying number of total

grid elements is shown in Fig. 7. The number of grid points in

each Cartesian direction was always of the form 2N, the op-

tional inputs ‘PlotSim’ and ‘CartInterp’ were set to

false and ‘nearest’, respectively, and the computational

times computed from three averages. The calculations were

performed using MATLAB R2009a on a 64-bit PC with four

3.00-GHz CPUs and 16 GB of RAM.

The computational speed when ‘DataCast’ is set to

‘single’ sdashed lined is increased by approximately 1.7

times compared to performing the computations using

‘double’ sdashed-dotted lined. As earlier versions of MAT-

LAB do not support multithreading, a comparison of perform-

ing the computations using ‘double’ in MATLAB 2008a son
the same PCd is also shown ssolid lined. The use of multi-

threading similarly increases the computational speed by ap-

proximately 1.7 times. This speed-up is a result of both the

FFT and the point-wise matrix multiplication used within the

implemented k-space simulation model being inherently

parallelizable.

The computational speed can be further improved through

additional parallelization, in particular, by using data types

that force program execution on the GPU. There are now

several third party MATLAB toolboxes available that contain

overloaded functions ssuch as the FFTd that run on any

NVIDIA sNvidia Corporation, Santa Clara, Californiad
CUDA-capable GPU. Within MATLAB, the execution is as

simple as casting the variables to the required data type. These

toolboxes can be used with the k-Wave simulation functions

by choosing the appropriate setting for the optional input pa-

rameter ‘DataCast’.

A comparison of performing the same computations sin
single typed using an NVIDIA Quadro FX 3700 with

512 MB of memory is also shown in Fig. 7 sdotted lined. In
3-D, the additional computational overhead of utilising the

GPU only becomes worthwhile when the grid size reaches 218

s643d elements. No data point is available for the GPU com-

putation using a grid size of 2563, as this exceeded the avail-
able memory of the particular card used for the comparison.

sNote, GPU cards with 4 GB of memory are already avail-

able.d For larger grid sizes, the use of the GPU increases the

computational speed between 2.5 scompared to multithreaded
CPU computation using singled and 7 times scompared to

single-threaded CPU computation using doubled. Using the

GPU, the simulation of 1000 time-steps for a grid size of 1283

can be completed in approximately 7 min.

5 Conclusions
The modeling and simulation of the phenomena underlying

PAT has a number of important applications. These include

investigating the effects of the various optical, thermal, acous-

tic, and system parameters on image reconstruction sfunda-
mental to the development of quantitative PAT

3d; the simula-
tion of phantom data; the development of new signal

processing and tomographic reconstruction techniques; and

indeed simply the reconstruction of photoacoustic images.

Here, a new and freely available MATLAB toolbox for pho-

toacoustic simulation and reconstruction is presented. The

simulation functions are based on a k-space pseudo-spectral

time domain solution to coupled first-order acoustic equations

for homogeneous or heterogeneous media. The application of

these functions to both forward simulations and time reversal

image reconstruction is described. Additional one-step, FFT-

based image reconstruction algorithms for linear s2-Dd or pla-
nar s3-Dd measurement surfaces are also discussed.

The application of the k-Wave toolbox to research ques-

tions within PAT is demonstrated through three examples.

First, the use of interpolation is shown to considerably im-

prove time reversal reconstruction when the measurement sur-

face has only a sparse array of detector points. Here, the re-

corded data at the discrete detector positions is interpolated

onto a continuous measurement surface within the time rever-

sal grid. This prevents the outgoing waves from the discrete
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detector positions being scattered by other positions at which

a pressure value is also being enforced. This result is of par-

ticular interest, as most PAT systems based on conventional

ultrasound detectors have sparse detector arrays.

Second, time reversal and one-step, FFT-based image re-

construction are shown to produce visually similar reconstruc-

tions when the measurement surface is planar. This result sug-

gests that the banding artifacts seen in reconstructions using

one-step, FFT-based algorithms are largely due to limited ap-

erture effects. Similarly, it can be concluded that time reversal

image reconstruction is sufficiently general that it can also be

used for open planar measurement surfaces. Moreover, the

inherent inclusion of the evanescent wave component in time

reversal appears to improve the reconstruction close to the

sensor surface. Consequently, it may be possible to improve

one-step, FFT-based reconstructions by also including the

contribution of evanescent waves. Last, an increase in com-

putational speed of up to 7 times is illustrated through the use

of parallelization using the GPU.

The framework of the simulation functions included within

k-Wave allow the application of the toolbox in many fields of

acoustics and ultrasonics. In addition to the initial pressure

distribution used in the examples given here, flexible time

varying sources may also be defined. This facilitates simula-

tions of conventional diagnostic ultrasound, seismology, or

environmental noise propagation. Similarly, the inclusion of

arbitrary power law absorption means that realistic absorption

parameters can be included in each of these cases. The direc-

tivity of sensor elements can also be modeled, increasing the

realism of the simulations. Future releases of k-Wave will

extend support for computations using the GPU, include ad-

ditional functions for conventional ultrasound imaging, and

allow integration with light models so that the complete pho-

toacoustic forward problem can be simulated.
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