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Artifact Trapping During Time Reversal
Photoacoustic Imaging for Acoustically

Heterogeneous Media
Benjamin T. Cox* and Bradley E. Treeby

Abstract—Several different reconstruction algorithms have
been proposed for photoacoustic tomography, most of which pre-
suppose that the acoustic properties of the medium are constant
and homogeneous. In practice, there are often unknown spatial
variations in the acoustic properties, and these algorithms give, at
best, only approximate estimates of the true image. The question
as to which approach is the most robust in these circumstances
is therefore one of practical importance. Image reconstruction
by “time reversal”—using a numerical propagation model with a
time-varying boundary condition corresponding to the measured
data in reversed temporal order—has been shown to be less
restrictive in its assumptions than most, and therefore a good
candidate for a general and practically useful algorithm. Here,
it is shown that such reconstruction algorithms can “trap” time
reversed scattered waves, leading to artifacts within the image
region. Two ways to mitigate this effect are proposed.

Index Terms—Artifact trapping, image reconstruction, photo-
acoustic imaging, time reversal.

I. INTRODUCTION

P
HOTOACOUSTIC tomography (PAT) is an emerging

technique for imaging regions of optical absorption in

light-scattering media, such as soft biological tissue. PAT

images are related to the optical absorption coefficient, and

so carry structural, compositional, and functional information

about the tissue. PAT has been widely demonstrated, and is

increasingly being used in the biomedical and life sciences (for

reviews, see [1] and [2], and references therein). It has passed

the “proof-of-principle” phase, and the focus is now turning to

refining its capabilities for use as a practical, high resolution,

experimental imaging technique. The enhancements necessary

to achieve this aim may be effected through improvements

in the image reconstruction process, as well as through the

development of better hardware, such as more sensitive and

smaller detector elements. Progress in image reconstruction
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could be realized either by 1) devising new image reconstruc-

tion algorithms that can incorporate additional information that

may be known about the tissue (e.g., sound speed distribution,

or prior structural details) or 2) finding which algorithms are

most robust to the uncertainties that will be found in practice

(e.g., in material properties, detector position, etc.). Both 1)

and 2) could be achieved by generalizing existing imaging

algorithms by lessening their dependence on idealizations and

assumptions that are not realistic for typical imaging scenarios.

This paper is concerned with the robustness of image recon-

struction using “time reversal.” It highlights one way in which

the particular nature of time reversal image reconstruction may,

in fact, exaggerate the level of image artifacts due to unknown

variations in density and sound speed. It is demonstrated that the

enforced time reversal boundary condition can “trap” artifacts in

the final image, and that by truncating the data, or introducing

a thresholded boundary condition, this artifact trapping can be

mitigated to some extent.

II. PHOTOACOUSTIC TIME REVERSAL IMAGING

A. Photoacoustic Initial Value Problem

When a pulse of light enters a turbid media with regions of

nonzero absorption, the light is scattered until it is either ab-

sorbed or exits from the tissue. Under conditions whereby the

absorbed optical energy is converted to heat there is a localized

increase in temperature and—if the heating occurs much more

quickly than the thermal relaxation time of the tissue—a pro-

portional increase in pressure. Because of the elasticity of the

tissue, this excess pressure propagates away as an acoustic wave.

This is known as the photoacoustic effect, and the excess pres-

sure is known as the initial acoustic pressure distribution. It is

this initial pressure distribution that PAT is designed to image.

(When longer wavelength electromagnetic radiation, e.g., RF or

microwave, is used in place of light, this technique is referred to

as thermoacoustic tomography. The acoustic image reconstruc-

tion problem, however, is identical in both cases.) When the du-

ration of the light pulse is a few nanoseconds, broadband ultra-

sonic pulses with a bandwidth of tens of megahertz are emitted.

Typically, such light pulses are sufficiently short for the acoustic

propagation to be modelled as an initial value problem. As the

pressure amplitudes are usually too low for nonlinear effects to

be important, the photoacoustic forward problemmay bewritten

as

(1)
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(2)

where is the acoustic pressure at time and point

inside the imaging region ( is typically 2 or

3), is the initial distribution of acoustic pressure, and the

mass density and sound speed may vary with position.

(The effect of spatial variation in the sound speed on PAT has

been studied by a number of authors [3]–[6] but little has been

said of the effect of density heterogeneities. Both are included

in the models used in this paper.)

B. Image Reconstruction

The photoacoustic image reconstruction problem is to esti-

mate given measurements of on an arbitrary mea-

surement surface , where and . Here

the measurement surface and , the boundary of , are

taken to be coincident.Most of thework on photoacoustic image

reconstruction has considered only acoustically homogeneous

media where and are constant and (1) is replaced with the

wave equation for homogeneous media

(3)

Several different PAT image reconstruction formulas that are

exact for acoustically homogeneous media have been proposed,

even though in practice the medium, e.g., soft tissue, is likely to

contain acoustic heterogeneities. However, as typically only the

spatially-averaged acoustic properties are known, algorithms

based on exact solutions, but using mean values of the material

parameters as if they were true values, can be used to obtain

good approximations to the true image.

In addition to these “homogeneous-exact” algorithms, a

number of approximate algorithms have also been successfully

used for PAT (for more details, see [2] and [5]). Given the many

reconstruction methods now available, an important question

arises: which is the best to use in real imaging scenarios? When

looking for the “best” algorithm to use in practice, several

factors must be taken into consideration, including accuracy,

speed, generality, memory requirements, robustness to uncer-

tainty in the positions of the sensors or partial data, robustness

to noise and errors in the measured data, and so on. There is

no a priori reason why an “exact-homogeneous” algorithm

must perform better than an approximate algorithm when all

these criteria are considered. Indeed, when there are unknown

acoustic heterogeneities, an exact-homogeneous solution is

itself only approximate.

C. Time Reversal Imaging

The notion of recreating acoustic pressure fields by retrans-

mitting measured acoustic pressure signals into the medium in

reversed temporal order has been used as an experimental tech-

nique for some years, and arose by analogy with the concept of

phase conjugation in optics [7]. Since then, a great deal of work

has been done on experimental demonstrations and simulations

of time reversal in acoustics, notably by Fink and colleagues

[8], [9], with applications such as nondestructive evaluation and

focussing through scattering media in mind. Bossy et al. [10]

have shown experimentally that acoustic waves generated pho-

toacoustically from an optical absorber can be refocused onto

the absorber.

The application of the idea of time reversal to tomography

was suggested by Xu and Wang [11], and Burgholzer et al. [12]

demonstrated that time reversal of a numerical model (rather

than the real, physical retransmission of the signals) could be

used as an imaging algorithm for PAT. The technique exploits

the fact that the solution, , to the initial value problem

[(3) and (2) in the homogeneous case] is identical to the solution

of the boundary value problem given by (3) [or

(1) if and are known] and the conditions

(4)

where the reverse-time variable runs from 0 to , and the

image appears at as .

The time limit is chosen to be a time after which

in , which is guaranteed in odd dimensions and homo-

geneousmedia byHuygens’ principle, and is approximately true

in even dimensions and heterogeneous media for sufficiently

large . It will be helpful to distinguish between the measure-

ment domain , the physical region in which the acoustic waves

propagate out from the photoacoustic sources, and the recon-

struction domain with boundary , the numerical space into

which waves are propagated during the time reversal image re-

construction. and are in silico equivalents to the real world

and . In a practical sense, the reconstruction is performed

by using the acoustic pressure time histories measured on for

to in time reversed order as an enforced (time-varying)

Dirichlet boundary condition on within a numerical acoustic

propagation model. Xu and Wang [11] point out that this is

equivalent to the re-transmission of the pressure in a reflective

cavity formed by where the time reversed is injected as

a source rather than by imposing a boundary condition.

Recently, time reversal photoacoustic imaging has been de-

scribed as the “least restrictive” imaging algorithm on the basis

that it relies on fewer assumptions than many other image re-

construction algorithms [6], [13]. For example, it is applicable

to closed measurement surfaces of any shape, is immune to

acoustic sources outside the measurement surface, and makes

no assumptions about the initial time rate of change of the pres-

sure (or equivalently the initial acoustic particle velocity). It has

also been shown to work reasonably well even when certain as-

sumptions fail, e.g., with a heterogeneous sound speed distribu-

tion, and in two dimensions [6], [13]. In addition to these ad-

vantages, there is no axiomatic constraint on the efficiency of

the algorithm; it is as fast as the numerical propagation code on

which it is based. For these reasons, it would seem to be the

leading candidate as a generally applicable and robust photoa-

coustic imaging algorithm. However, it is shown below that the

boundary condition inherent in time reversal imaging can act as

a reflector to trap the time reversed versions of waves scattered

by acoustic heterogeneities, leading to a greater level of artifacts

in the image.
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Fig. 1. Artifact trapping and thresholded time reversal, 1-D example. Forward propagation: (a) Step changes in sound speed and density, which lead to reflected
waves in the measurements (also shown by the dotted lines). The dashed lines indicate the positions of the detectors. (b) The initial acoustic pressure distribution,
at , propagates in both directions. (c) The acoustic pressure at showing a reflection from the boundary of the sound speed heterogeneity. (d) The
acoustic pressure at showing two reflections, one from the each of the heterogeneity boundaries, propagating in opposite directions. The reflection
from the change in density experiences a change of sign. Time reversal imaging: (e) The mean sound speed and density are used for the reconstruction, simulating
a case in which the details of the acoustic heterogeneities are unknown. (f) The time reversed field at a time where , which is
equivalent to ; cp. Fig. 1(c). (g) Reconstructed pressure distribution using conventional time reversal showing the artifacts resulting from the reflection
of the vestigial waves from the measurement surfaces (dashed lines). (h) Reconstructed pressure distribution using a thresholded boundary condition, showing no
artifacts, as the vestigial waves have propagated across the boundary.

III. ARTIFACT TRAPPING

When time reversal image reconstruction is performed in a

medium with known acoustic properties, the waves in gener-

ated by the time-varying boundary condition interfere in such a

way as to reproduce exactly, in a time reversed, inward-going

sense, the outward-going pressure field that resulted in the

boundary measurements. However, if and vary spatially

but only their mean values are known (as is typically the case

in practice), the time reversed waves will no longer interfere

precisely to reproduce the original wavefield. Instead, they will

form an approximation to it, but with additional waves present.

These extra waves, generally of lower amplitude than the main

wave, are the time reversed relatives of the waves scattered from

the acoustic heterogeneities during the forward propagation.

They persist in the time reversal due to the mismatch between

the actual heterogeneous medium in (in which the time series

are recorded) and the homogeneous approximation to it in ,

used in the model. These time reversed vestiges of the scattered

waves, the remaining traces of evidence for the presence of

acoustic heterogeneities, will be referred to as vestigial waves.

During the time reversal reconstruction, the vestigial waves

will continue to propagate through until they reach the

boundary, , on which the Dirichlet boundary condition, (4), is

being enforced. Depending on the particular values imposed on

the boundary at that moment, they may then be reflected back

into . Vestigial waves are artifact-producing waves, in the

sense that any of them remaining in at (corresponding

to ) would constitute artifacts in the final image. By this

mechanism, the Dirichlet boundary condition on can be said

to trap image artifacts within .

It should be noted that this effect of artifact trapping is a prop-

erty of the reconstruction algorithm, and should not be confused

with ray trapping, which is a property of a medium, specifically

one with a sound speed distribution which bends the sound rays

in such a way that they never reach the measurement surface. In

[6], which discusses the effect of ray-trapping on time reversal

imaging in PAT, a nontrapping condition is used to refer to a

medium with a sound speed distribution such that it does not

trap rays; it does not mean that the images are immune to arti-

fact trapping in the sense described in this paper.

A. One-Dimensional Example

An illustrative 1-D example of artifact trapping is shown in

Fig. 1. The propagation medium contains step changes in both

sound speed, , and density, , as shown in Fig. 1(a). The values

in the center are and , with

a 30% increase in the sound speed on the left and a 30% in-

crease in the density on the right. (The rather large changes in the

acoustic properties used in this pedagogic example were delib-

erately chosen to help describe the concept of artifact trapping

clearly.) A smoothly varying initial acoustic pressure distribu-

tion (which in 1-D will be a plane wave) will begin to prop-

agate in both directions, as indicated in Fig. 1(b), towards the
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Fig. 2. Artifact trapping, 2-D example: (a) At there is a step change in the density from 1000 to 700 . The position of the square
measurement surface is shown as a solid black line. (b) The initial pressure distribution is a disc of diameter 0.5 mm. (c) A difference image showing the estimate
of the initial pressure distribution reconstructed using time reversal and assuming a uniform density distribution minus the true image. The trapped artifact (the
lower circle) is clearly visible. The amplitude of the true initial pressure is underestimated, hence the negative upper circle.

two measurement surfaces (in this case the two points denoted

by the dashed lines). When the outgoing wave reaches the den-

sity or sound speed change, the impedance mismatch will cause

a proportion of the wave to be reflected, as shown in Fig. 1(c)

for the sound speed change, and Fig. 1(d) for the density change.

Note that on reflection from the density change the pulse under-

goes a phase change to become negative. The two pressure time

series recorded at the measurement points, , will thus con-

tain the initial pressure pulse followed by a series of reflections

of decreasing amplitude.

If is used in a conventional time reversal reconstruction

(i.e., as a time-varying Dirichlet boundary condition) with the

correct sound speed and density distributions, the initial pres-

sure distribution will be recovered exactly, as the time reversed

versions of the reflected waves will recombine with the main

pulses correctly. However, if the details of the acoustic hetero-

geneities are unknown (as will typically be the case in prac-

tice) and the mean sound speed and density are used in place of

the exact ones, then the recombination will not occur properly

and the time reversed versions of the reflected waves—which

we have called “vestigial” waves—will remain inside the do-

main. When they reach the measurement surface, they will be

reflected due to the enforced boundary condition and, conse-

quently, trapped within the domain, resulting in artifacts in the

final image.

This effect is shown in Fig. 1. The mean, rather than the true,

acoustic properties are used in the reconstruction, as indicated

by Fig. 1(e). Fig. 1(f) shows the time reversed field at a time

corresponding to that in Fig. 1(c). For a perfect time reversal

reconstruction these should be identical between the measure-

ment surfaces. (The leftmost wave in Fig. 1(f), beyond the mea-

surement point, is due to the boundary condition being enforced

there and is not relevant to the reconstruction. Note the sym-

metry about the measurement point with its counterpart trav-

eling in the opposite direction.) However, in this case there are

clearly several differences. First, the pulse widths are slightly

different due to the different sound speeds in the forward and

time reversed directions. Second, the negative pulse in Fig. 1(f)

is not evident in Fig. 1(c) because, in Fig. 1(c), the wave has yet

to reflect from the boundary. As the vestigial waves continue to

propagate theywill reflect from themeasurement surfaces due to

the enforced boundary conditions there, and appear as artifacts

in the final image, Fig. 1(g). If, as in this case, the boundary con-

dition happens to be being set to zero when the vestigial wave

reaches it, it will be reflected with a change of sign. In general,

the situation will be more complex, as the boundary condition

may be any value. Fig. 1(h) will be discussed in Section IV-B

below. In this example, and those given below, a -space prop-

agation model based on (1) was used to simulate the measured

data, and a similar model, but with and set to constant values,

was used for the image reconstruction [14], [15].

B. Vestigial Wave Reflection

In this section, a 2-D example, designed to show clearly

the phenomenon of artifact trapping, is described. For this

reason, the initial pressure distribution, acoustic heterogeneity,

and measurement surface were chosen to be simple geometric

shapes, as it is possible in this case to observe the individual

vestigial waves being reflecting from the measurement sur-

face by the imposed boundary condition. Fig. 2(a) and (b)

shows a density heterogeneity consisting of a step change in

the density from 1000 to 700 , and a circular initial

pressure distribution with a diameter of 0.5 mm. The square

measurement surface is also shown on both figures as a solid

black line. Starting at time , a circular photoacoustic

wave propagates outwards from the initial pressure distribution.

When it reaches the density heterogeneity, a scattered wave

is reflected back upwards (negative -direction). The acoustic

pressure time series are recorded at every pixel forming the

measurement surface for times to , which in

this example is . In principle, for time reversal

imaging it is necessary to record the pressure at the boundary

until the pressure in is zero. In 2-D, this will never (quite)

be the case, but in practice it is only necessary to record until

the pressure has dropped to a sufficiently low nonzero value.

These forward simulations were performed using the k-space

method described in [14] and [15], on a 256 256 pixel square

grid, with a sound speed of 1500 m/s, and time steps of 7.8 ns.

Random noise was added at 5% of the maximum value of the

“measured” data, and the measurements were interpolated onto

a 304 304 pixel grid for use in the image reconstruction.

(This arrangement was used for all the 2-D simulations.)
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Fig. 3. Artifact trapping, 2-D example: the vestigial wave—the time reversed version of the wave scattered from the density change in Fig. 2(a)—is seen below
the main converging circular wavefront, reflecting from the measurement surface because of the boundary condition imposed there by the time reversal imaging
algorithm, and converging on its way to becoming an artifact. The difference image, Fig. 2(c), shows the artifact clearly. The snapshots of the wavefield are taken
at values of the reverse time variable of (a) , (b) , and (c) , where , the duration of the measurements, was 9.42 . The arrows
indicate the direction of the vestigial wave. The colorscale was set to enable the vestigial waves to be seen clearly, which resulted in clipping the amplitude of the
main circular wavefront.

For the time reversal image reconstruction, the simulated

measurements were used as a time-varying Dirichlet boundary

condition with the reversed time variable running from 0

to (equivalent to from to 0). The wavefield at times

, , and during the time

reversal is shown in Fig. 3. The converging circular wave in

the center of the three images (a), (b), and (c) is the time

reversed wave that will form the image of the initial pressure

distribution. The wave just beneath this is a vestigial wave. In

(a), it is traveling downwards towards the measurement surface

(black line) on which a boundary condition is imposed. In (b)

it has partly been reflected from the surface, and in (c) it is

converging to form the artifact shown clearly in Fig. 2(c), which

shows the difference between the true and reconstruction initial

pressure distributions. It is this reflection of the wave from

the measurement surface, that we are referring to as artifact

trapping. (In Fig. 3 the color scale has been set so that the lower

amplitude vestigial wave is clearly visible.)

It is interesting, although perhaps not surprising, that in this

case the amplitude of the distinct artifact [the lower circle in

Fig. 2(c)] is very similar to the reduction in the amplitude of the

original pressure [given by the upper circle in 2(c)]. Of course,

this is just a tutorial example. In general, the vestigial wave will

not be so clearly distinguishable from the other waves propa-

gating in , different shaped measurement surfaces will lead to

different shaped final artifacts, the acoustic heterogeneities will

be less geometric in shape, and there will be heterogeneities in

sound speed as well as density. This simple scenario was ar-

ranged merely to illustrate the phenomenon clearly, not repre-

sent a realistic case study. The phenomenon itself is, however, a

general one and not dependent on the specifics of this particular

example.

C. Comparison to Spherical Mean Algorithm

Finch et al. [16] have published a PAT reconstruction algo-

rithm based on the inversion of spherical means that is exact

in the 2-D homogeneous case, and which is applicable when

the measurement surface is circular. For the example above, a

square measurement surface was chosen so that the reflection

of the vestigial wave could be clearly seen. A similar example

is used here, but using a circular sensor surface (inscribed in-

side the position of the square sensor). The sensor was chosen

to have 360 equally spaced pixel-sized elements. For this time

reversal imaging, a continuous measurement surface was used,

which was divided into 360 equal arcs and the data from each of

the 360 sensor elements associated with its corresponding arc.

In this way the surface’s continuity is maintained [15].

Fig. 4(b) shows the image reconstructed using conventional

time reversal. A curved artifact is clearly visible near the bottom

of the image. This is different from the disc artifact in Fig. 2(c)

because the shape of the measurement surface is different, even

though everything else about the two examples is the same. The

same artifact is not so clearly visible in Fig. 4(a), which shows

the solution obtained using the algorithm in Finch et al. [16].

This is one example of how, in some circumstances, time re-

versal image reconstruction can result in images with a greater

number of artifacts than other reconstruction approaches.

One reason for the superior performance of the Finch et al.

algorithm may be due to the fact that it only uses data from

to , where is the radius of the circular

measurement surface, so none of the waves scattered and re-

flected by the heterogeneities that arrive at the sensor surface

after are included in the reconstruction process. In con-

trast, the requirement for the pressure field to be (virtually) zero

inside in the time reversal case, means that much longer time

series were used in the reconstruction. The fact that the Finch

et al. reconstruction only needs data up to the time when all

the wavefront edges—the abrupt changes—have arrived at the

sensor in order to reconstruct an exact image, is interesting. It

does not need the “tail” of the acoustic waves suggesting they

do not carry any extra information even though—because this

is in 2-D—they are always nonzero. The advantage of applying

this sort of truncation to the data in the time reversal case will

be explored below in Section IV-A.

IV. MITIGATING ARTIFACT TRAPPING

The reconstruction algorithm of Finch et al. proved supe-

rior to time reversal, in the example considered above, in terms
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Fig. 4. Artifact trapping, 2-D example: Images reconstructed using data recorded over a circular measurement surface of radius 3.7 mm, with 360 equally spaced
sensor elements, for the disc-shaped initial pressure distribution shown in Fig. 2(b). (a) Reconstruction using Finch et al’s 2-D algorithm [16] and (b) conventional
time reversal image reconstruction. The grayscale is set to [ 0.05, 0.05] in order to show the artifacts clearly. The curved artifact trapped by the time reversal
algorithm is clearly visible in (b) but not in (a).

of the level of artifacts in the image resulting from unknown

acoustic heterogeneities. Time reversal, however, remains much

more general in its applicability (e.g., Finch et al. require a cir-

cular measurement surface) and is considerably faster to com-

pute. (In Matlab, running on a 3 GHz CPU, the Finch algorithm

took more than 600 s compared to 20 s for the time reversal,

even though many of the calculations for the former were per-

formed on a nVidia Quadro FX 3700 GPU using the Matlab

GPUmat toolbox (available from gp-you.org). For 3-D recon-

structions this difference in speed will be much greater.)

Therefore, because of its speed, versatility and generality, time

reversal image reconstruction remains an attractive option, de-

spite its tendency to trap artifacts. In an attempt to improve

the performance of time reversal to these sorts of data errors,

two ways to reduce the effect of artifact trapping are described

below: data truncation and a thresholded boundary condition.

A. Truncated Data

In three-dimensions, in an acoustically homogeneous

medium with sound speed , a spherical sensor surface

with radius will detect no photoacoustic signal after time

(Huygens principle). Any waves arriving after

time cannot be primary photoacoustically generated waves

but must be reflections or scattered waves from acoustic

heterogeneities. These waves can lead to artifacts in the recon-

structions, as described previously, so not including them in the

data for the reconstruction seems sensible. In other words, this

“range condition” can be used as a justification for truncating

the signal at .

Fig. 5 shows the results from the 3-D simulation equivalent

to the 2-D example in Fig. 4. The initial pressure distribution

is a ball with diameter 0.5 mm, centered at the origin, the mea-

surement surface is spherical with radius 3.7 mm, also centered

at the origin. There is a step change in the density from 1000 to

700 on the plane , which gives rise to an

artifact when it is not included in the reconstruction. The simu-

lation was performed on a grid, and 5% noise

was added to the data. Fig. 5(a)–(c) shows orthogonal slices

through the center of the image obtained by time reversing data

recorded up to 11.6 . (The initial pressure distribution was

of unit amplitude. The grayscale on these images covers the

range [ 0.05, 0.05] in order to show the artifact more clearly.)

A curved artifact due to the trapping of a vestigial wave is vis-

ible. Fig. 5(d)–(f) shows the same as (a)–(c), except that this

time only the data up to 5 was used. The artifact has been

reduced, showing that truncating the data can be beneficial in

3-D.

Unlike propagation in 3-D, propagation in 2-D does not

satisfy Huygens principle, as the tails of the photoacoustically

generated waves approach zero only in the limit of infinite time.

(Although in practice, the tail always falls below the noise floor

rather sooner.) In 2-D, then, truncating the data to time is

not a range condition, as the measured signals are not expected

to fall to zero after this time, even in homogeneous media.

However, Finch et al.s exact 2-D imaging algorithm, used in

Section III-C, uses the data only up to time , suggesting

that the tails of the signals do not carry additional information

about the image. On this basis, truncated time series were

used for the 2-D time reversal image reconstruction described

in Section III-C. The image in Fig. 4(b) was reconstructed

using time series up to 9.4 . The same data, but truncated

to , was used to reconstruct the image shown in

Fig. 6(a). Comparing these two images it is clear that truncating

the data can be advantageous in 2-D. (Anastasio et al. [4] take

the idea of truncating the data to reduce imaging artefacts due

to heterogeneities further, and look at the ameliorating effect

of using more severe temporal truncations to times of only

: “half-time” reconstruction.)

B. Thresholded Boundary Condition

Fig. 7(a) shows a simulated pressure time series from the

example described in Section III-B (shown in Figs. 2 and 3).

The reflected wave is clearly visible as a second pulse with a

lower amplitude than the first. In time reversal reconstruction,

time series such as this are used to define the pressure at the

boundary (the measurement surface) as a function of time, i.e.,

as a time-varying Dirichlet condition. Whenever the pressure is

close to zero, a pressure-release boundary condition, equivalent
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Fig. 5. Truncated data reconstruction, 3-D example: The initial pressure distribution was a ball of unit amplitude, diameter 0.5 mm and centered at the origin.
The measurement surface was a sphere of radius 3.7 mm, centered at the origin. The density steps from 1000 to 700 across the plane . A

grid was used, and 5% noise added to the simulated time series data. The grayscale was set to [ 0.05, 0.05] in order that the artifacts appear more
distinctly. (a)–(c) Slices through the image obtained by time reversing data recorded up to 11.6 when it is assumed that only the mean values of the acoustic
parameters are known. A curved artifact due to the trapping of a vestigial wave is apparent. For the reconstruction shown in (d)–(f) only data up to 5 was used.
The artifact has been reduced, showing that truncating the data can be beneficial.

in ultrasonics to a water-air interface, will result, which will re-

flect any incident waves with a reflection coefficient close to 1.

A similar interaction will occur when the boundary is enforced

to other values, although the characteristics of the reflected wave

will be more complex. It is in this way that the boundary condi-

tion—an integral part of the time reversal image reconstruction

approach—can act to trap vestigial waves within the image re-

gion leading to artifacts in the final image.

Under certain conditions, it may be possible to remove the

boundary condition and allow the vestigial waves to pass freely

out of the imaging region. Ideally, the boundary conditionwould

be removed whenever and wherever on the boundary such a

wave is incident. However, unless the imposed boundary pres-

sure happens to be zero at that moment, this approach

will result in a reduction of the amount of useful data used in the

reconstruction (not to mention the difficulty of knowing when

the vestigial waves are arriving). A balance must be reached be-

tween allowing the vestigial waves to pass across the boundary

and ensuring the measured data is fed into the reconstruction.

This may be achieved by imposing a thresholded boundary con-

dition of the form

(5)

where is a threshold value. For example, Fig. 7(b) shows the

same time series as Fig. 7(a), but zoomed in to show the low

amplitude region, and a threshold set at an amplitude of .

When (which is computed separately for

each position on ), no boundary condition is imposed and the

residual waves can freely propagate out of the imaging region.

The selection of the numerical value for will be a tradeoff

between reducing artifact trapping and including sufficient data

in the reconstruction.

One-Dimensional Example: Fig. 1(h) shows the estimate of

the initial pressure distribution for the 1-D example described in

Section III-A, reconstructed using time reversal with this thresh-

olded boundary condition. It is clear that the vestigial waves

are now able to propagate freely through the measurement sur-

face (the two pointsmarked by dashed lines). The reconstruction

of the main wave pulse remains almost identical (the coherent

interaction between the main wave pulses is barely changed),

while the two reflection artifacts are no longer present within

the imaging region.

Two-Dimensional Example: For the 2-D case, Fig. 8(a)

shows the difference between the true initial pressure distribu-

tion [Fig. 2(b)] and its estimate obtained using the thresholded

approach. As in Fig. 2(c), the reconstruction assumed the mean

value for the density; however, unlike Fig. 2(c) which used

conventional time reversal reconstruction, here a boundary

condition threshold was set at . Clearly the amplitude

of the main artifact is lower, as expected, because the vestigial

wave was no longer trapped by the boundary condition. How-

ever, the thresholding did result in new, lower level, artifacts in

the form of arcs in the vicinity of the source. This exemplifies
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Fig. 6. Truncated and thresholded reconstruction, 2-D example: Images reconstructed using data recorded over a circular measurement surface (as in Fig. 4). (a)
Conventional time reversal image reconstruction using only data up to time , where is the radius of the circular measurement surface and is the
mean sound speed. Comparison with Fig. 4(b) clearly shows that truncating the data can have the effect of removing part of the curved artifact. (b) Thresholded
time reversal reconstruction with . The artefact visible in Fig. 4(b) has been removed at the expense of a slight increase in lower level artifacts spread
across the image. (c) Truncated and thresholded time reversal reconstruction with . Thresholding reduces the level of the artifact further than truncation
alone, showing that the two approaches are complementary and not equivalent. In this case, little advantage is gained by truncating the data as well as thresholding.
The grayscale in all the images is set to [ 0.05, 0.05].

Fig. 7. (a) Simulated (2-D) pressure time series from the example in Figs. 2 and
3, with the reflected wave clearly visible. In the time reversed reconstruction,
the many values close to zero will result, effectively, in a reflective “pressure-
release” boundary wherever it is imposed. In this way, the boundary condition
can act to trap vestigial waves within the image region leading to artifacts in
the final image. (b) Detail of the time series in (a) close to zero, with a possible
threshold condition indicated with values of .

the general point, that there will be a tradeoff between reducing

the effect of artifact-trapping, and maintaining the amount of

information used to reconstruct the image.

Choice of Threshold Parameter : The thresholded time re-

versal algorithm can provide an infinite family of images: one

for each value of the threshold parameter . Setting , for

instance, gives an image equivalent to that obtained from con-

ventional time reversal imaging. At the opposite extreme, set-

ting larger than any value of the measured pressure will re-

sult in an image that is zero everywhere. It is therefore neces-

sary to strike a balance somewhere between these two extremes.

Which of the images—which value of —is the correct one to

choose? All the possible images will be approximations to the

true image, and none of themwill be exactly correct, so a criteria

to determine the “best” is needed. A useful comparison can be

made here to image deblurring and related techniques, in which

a regularization parameter must be chosen in a largely analo-

gous way to the problem of selecting here. This problem has

been widely discussed in the literature (see, for example, [17].)

The optimum value of will depend on the criteria that is used

to choose it. It is likely that in practice, the signal-to-noise ratio

in the measurements will affect the choice of too. If is set

close to the noise floor, as indicated in Fig. 7, then all of the

signal above the noise will be included in the reconstruction.

This should not be taken as a strict criterion, however, as there

maybe useful data masked by the noise that nevertheless com-

bines constructively during the image reconstruction process,

while the noise reduces through an averaging effect. The cri-

teria may be qualitative—based on what the images look like,

for instance—or more quantitative, using techniques such as

the L-curve or generalized cross validation. In the simple case

where the true image is known, such as may be the case when

testing algorithmswith simulated data or using phantoms, an ob-

jective measure of error could be used to choose , such as the

norm of the difference between the images. The norm (the

root mean squared error) was calculated for a range of values

of for the example above, and is shown in Fig. 8(b). The

smallest error occurs when , the difference image

corresponding to which is shown in Fig. 8(a).

Circular Detector Example: In Fig. 6(b), a thresholded algo-

rithm with has been used, which largely removes the

curved artifact visible in Fig. 4(b). Fig. 6(c) shows the image

obtained using temporally truncated data with the thresholded

algorithm. Thresholding [Fig. 6(b)] reduces the level of the ar-

tifact further than truncation alone [Fig. 6(a)] showing that the

two approaches are not equivalent. In this particular case, little

advantage is gained by truncating the data as well as thresh-

olding [Fig. 6(c)] but this will not necessarily be the case in gen-

eral, as the two strategies could be complementary.

Random Heterogeneities: As a final example, consider the

propagation of a circular wave through a medium with random

acoustic heterogeneities, as shown in Fig. 9. Here, the waves

resulting from a 0.5 mm diameter, disc shaped, initial pres-

sure distribution with unit amplitude, and propagating within a

medium with random variations in sound speed and density, is

recorded over a circular measurement surface (3.7 mm radius).
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Fig. 8. Thresholded reconstruction, 2-D example: (a) image of the difference between the true initial pressure distribution, Fig. 2(b), and the estimated recon-
struction using time reversal with a thresholded boundary condition and . Comparison with the difference image for the conventional reconstruction,
Fig. 2(c), shows that the thresholded boundary approach achieves almost total removal of the main artifact. (b) The root mean squared error in the reconstructed
image as a function of the threshold parameter .

Fig. 9. Artifact trapping with random heterogeneities, 2-D example. (a) Reconstruction using conventional time reversal. (b) Reconstruction using thresholded
time reversal with , showing a reduction in the level of artifacts, especially closer to the boundary. (c) Error histograms for conventional and thresholded
time reversal. (d) Reduction of the Lorentzian width parameter (an estimate of the level of error) with the time reversal threshold .

The sound speed and density were set by an algorithm that added

square sound speed heterogeneities, whose sizes and amplitudes

were chosen randomly from Gaussian distributions, to a mean

background value in random locations. The sound speed het-

erogeneity amplitude was modelled as Gaussian with a mean

of 1500 m/s and a standard deviation of 0.04. The density was

selected as , which is a relation derived

from the measured properties of soft tissue [18]. The simula-

tions were performed on a 512 512 grid. While this model

may not exactly mimic tissue structure, it provides a similarly

heterogeneous medium with which to test the robustness of the

algorithms.

The simulated data, truncated at time , was used in a

time reversal reconstruction (that assumed uniform acoustic

properties with the value of the mean sound speed and density)

with both conventional and thresholded boundary conditions

(with ), shown in Fig. 9(a) and (b), respectively. The

grayscale range is [ 0.05 0.05]. Applying the thresholded

boundary condition has reduced the overall level of artifacts,

especially near the outer edges of the image. Histograms com-
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paring the magnitude errors in the reconstructions are shown

in Fig. 9(c), demonstrating the superiority of the thresholded

algorithm when random variations of this sort are present [the

solid line corresponds to Fig. 9(a), the dashed line to Fig. 9(b)].

To make a quantitative error comparison, a two-parameter

centered Lorentzian was fitted to these

histograms. The reduction of the Lorentzian width parameter ,

an indicator of the level of error, as the time reversal threshold

value is increased is shown in Fig. 9(d). As increases,

there is a reduction in to a minimum at which the value of

reaches the noise floor. Further increases in , which will

decrease the time the boundary condition is enforced, will

result in degradation of the image as the amount of data used

in the reconstruction is reduced. This example demonstrates

that thresholded reconstruction can reduce the overall level of

background artifact “noise” in an image, as well as reduce the

amplitude of specific artifacts as described above.

V. ADDITIONAL CONSIDERATIONS

Acoustic Absorption: None of the models used to simulate

the data in the examples above included the effect of acoustic

absorption. In practice, absorption will reduce the amplitude of

reflections that have travelled some distance through the tissue,

but will not fundamentally affect artifact trapping. Scattered

waves will still be detected, albeit at lower amplitudes, and will

still result in vestigial waves during the time reversal process.

Where absorption is significant and quantitatively accurate re-

constructions are required, an algorithm that accounts for the

absorption (that counteracts it, so wave amplitudes grow as the

waves propagate) may be used in the image reconstruction. Such

a model, when used for time reversal imaging, rather than im-

prove the image accuracy could exacerbate artifact trapping by

increasing the amplitudes of the vestigial waves.

Scattering From Incomplete Measurement Surfaces: Often,

for practical reasons, it is necessary to use an incomplete mea-

surement surface. The surface could be truncated, for instance,

or measurements made at only a number of sampling points to-

taling only a fraction of the whole surface. When time reversal

is used without a complete surface, it is necessarily an approxi-

mation, although it is interesting that it can still often construct

good approximate images in these cases [15]. When the mea-

surements are made at discrete points, the time reversal algo-

rithm fixes the pressure at these points which can make them

act as scatterers. In this case, rather than trapping a vestigial

wave whole, as it were, it may scatter it back into the imaging

region. This can result in arc-like artifacts across the image. One

way to reduce these artifacts is to time-reverse with a complete

measurement surface acting as the boundary, and interpolate the

measured data onto it [15].

VI. SUMMARY AND CONCLUSION

The phenomenon of artifact trapping in time reversal pho-

toacoustic image reconstruction was identified and described.

In time reversal image reconstruction, when a model of prop-

agation in an acoustically homogeneous medium is used to

time reverse measurements made in a heterogeneous medium,

vestigial waves appear in the image domain. These can subse-

quently become trapped by the enforced boundary condition

inherent in time reversal imaging and appear as artifacts in the

final image. Truncating the measurement data and using an

adaptive thresholded boundary condition were both shown to

mitigate this source of error.
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