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a b s t r a c t

For many engineers and acousticians, the boundary element method (BEM) provides an invaluable tool

in the analysis of complex problems. It is particularly well suited for the examination of acoustical

problems within large domains. Unsurprisingly, the widespread application of the BEM continues to

produce an academic interest in the methodology. New algorithms and techniques are still being

proposed, to extend the functionality of the BEM, and to compute the required numerical tasks with

greater accuracy and efficiency. However, for a given global error constraint, the actual computational

accuracy that is required from the various numerical procedures is not often discussed. Within this

context, this paper presents an investigation into the discretisation and computational errors that arise

in the BEM for acoustic scattering. First, accurate routines to compute regular, weakly singular, and

nearly weakly singular integral kernels are examined. These are then used to illustrate the effect of the

requisite boundary discretisation on the global error. The effects of geometric and impedance

singularities are also considered. Subsequently, the actual integration accuracy required to maintain a

given global error constraint is established. Several regular and irregular scattering examples are

investigated, and empirical parameter guidelines are provided.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The numerical solution of boundary integral equations via the
boundary element method (BEM) has become a popular approach
for solving acoustical problems. The now ubiquitous presence of
high-speed computing has made it possible for engineers and
acousticians to investigate any number of complex scenarios for
which analytical solutions do not exist, or for which approximate
solutions are not well suited. Unsurprisingly, the widespread
application of the BEM continues to produce an academic interest
in the methodology. New algorithms and techniques are still being
proposed which extend the functionality of the BEM and allow the
required numerical tasks to be computed with greater accuracy
and efficiency. There are now a myriad of approaches for
formulating the governing equations, discretising and computing
the boundary quantities, computing singular integrals, and
ensuring the uniqueness of the final solution. However, the
overwhelming extent of the available literature paradoxically
increases the difficulty of understanding the technique. Much of
ll rights reserved.

: +44 20 7679 0255.
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Mechanical Engineering, The
the advanced literature is focused on very specific aspects of the
BEM and the consequence of utilising particular numerical
routines or element types on the overall problem accuracy is
not always immediately clear.

In an academic sense, formal mathematical investigations on
the convergence of the various discretisation and numerical
procedures lie within the (now) historical literature (e.g., [1,2]).
In contrast, within engineering fields it is recurrently only the
relative number of elements that is considered, with six elements
per wavelength the most frequently prescribed guideline (see [3]
and references therein). In fact, the errors in the BEM can arise
from several distinct locations:
�
 the discrete approximation of the varying boundary quantities;

�
 the discrete approximation of the boundary geometry;

�
 geometric and impedance singularities;

�
 the numerical computation of regular integrals;

�
 the numerical computation of singular integrals;

�
 and, the solution of the system of equations.

The first three may be regarded as discretisation errors, the next
two as quadrature errors, and the last incorporates the well-
known non-uniqueness difficulty. Despite the continual advances
in numerical and BEM literature, the actual accuracy that is
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required from the various computations to maintain a given level
of global accuracy is rarely discussed. In this context, these errors
are explored in detail here, primarily in relation to the direct
collocation BEM for the two-dimensional (2D) Helmholtz equa-
tion. The investigation is practical in nature, rather than
mathematically formal, and empirical guidelines are established
for the various error constituents.

The basic formulation and use of the collocation BEM is well
known (e.g., [4–7]). Arbitrary boundary surfaces are first dis-
cretised into a finite number of boundary elements. Across
each element, approximations are made about the variation of
the boundary quantities (the pressure and velocity in the direct
BEM) and geometry. The boundary quantities are assigned
at a discrete number of nodes per element (referred to as the
element order), and shape functions are used to approximate the
values at the other positions. The variation of the boundary
geometry is modelled in the same way. The overall computational
effort is directly related to the total number of boundary
nodes (often referred to as the number of system degrees of
freedom).

Considering first only the error associated with the discretised
approximation of the varying boundary quantities, the solution
convergence with various mesh modifications is well documented
(e.g., [8]). If the number of elements is increased without
modifying the number of nodes per element (the so-called
refinement or h-method), an algebraic convergence related to
the element order is obtained as the total number of degrees of
freedom is increased. If the number of elements is kept constant
and instead the number of nodes per element is increased (the so-
called enrichment or p-method), an exponential convergence is
obtained. However, if the boundary is not smooth, i.e., it contains
geometric or impedance singularities, the convergence of the
p-method degenerates. Boundary singularities occur because of
abrupt changes or discontinuities in the surface profile or its
properties. These cause the solution and its derivatives to vary
rapidly or become unbounded [9]. A combination of the refine-
ment method near boundary singularities and the enrichment
method elsewhere (the so-called hp-method) can restore the
exponential convergence of the p-method [10,11].

In addition to the number of elements (and nodes per
element), the continuity of the quantities around the boundary,
enforced by the element type, is also of importance. If the outer
nodes on each element are placed at the endpoints and shared
between adjoining elements, the surface quantities remain
continuous around the boundary. Continuous isoparametric linear
and parabolic elements are the most widely used in engineering
applications [3]. Alternatively, if the outer nodes are located
within the element, the boundary quantities become discontin-
uous. Compared to continuous elements, this requires an increase
in the overall number of nodes to describe the same order of
boundary variation (as nodes are no longer shared between
elements). Despite this, if the nodes are positioned correctly,
discontinuous elements can provide an increase in accuracy for
the same number of system degrees of freedom [12]. For three-
dimensional quadrilateral or triangular elements, the zeros of the
Legendre polynomials provide this optimum position. Discontin-
uous elements also have the distinct advantage of the normal
direction always being well defined. Similarly, they naturally
satisfy the C1 continuity condition.

In contrast to the approximation of the boundary quantities,
the variation of the boundary geometry should remain continuous
from one element to the next. For discontinuous boundary
quantities, this requires the use of continuous shape functions
based on a different set of nodal values. However, this does not
add any particular computational complexity, as the geometric
coordinates of the utilised nodes are required in any case. Rather,
the inherent separation of the boundary geometry and quantities
makes it straightforward to use non-isoparametric elements.
This is computationally efficient when using higher-order shape
functions to describe the variation of the boundary quantities for
simple boundary geometries. The requirement for the geometric
discretisation is that the variation of the boundary elements
matches that of the underlying problem. For isoparametric linear
elements, the error from the geometric discretisation of curved
boundaries is of the same order as that from the discretisation of
the boundary quantities [8].

Returning to the convergence of the BEM, rather than simply
uniformly increasing the total number of elements or nodes to
improve accuracy, local error indicators can be used to specify
regions where the boundary discretisation must be refined [13].
The use of suitable adaptive methods can significantly improve
the rate of convergence, as degrees of freedom automatically
become concentrated near boundary singularities and other areas
where the surface quantities vary rapidly [13–16]. However, the
computation of many error indicators (upon which the adaptive
procedures rely) is very expensive; on the order of the BEM
analysis itself [17]. Moreover, at each step of the mesh refinement,
the problem must be recomputed. As an alternative, boundary
meshes may be graded a priori so that the optimal values of
convergence are maintained [11,18]. Similarly, boundary singula-
rities may also be counteracted by using specially designed
interpolation functions [8].

Apart from discretisation errors, the computation of the
element-wise boundary integration (typically via numerical
quadrature) may also introduce errors into the BEM. In a
commercial BEM package, the modification of the quadrature
routines is unlikely to be facilitated. Moreover, in classical studies,
the quadrature error is rarely considered important in comparison
with that from the boundary discretisation (e.g., [19]). However,
care must be taken that it is sufficiently small [20]. For regular
integrals, this constraint is of no particular consequence as
standard quadrature routines are able to compute the required
integration tasks very accurately. Nonetheless, it is important to
ensure that singular and nearly singular integrals can be
computed with the same accuracy. This is particularly important
for boundaries that yield coefficient matrices where the diagonal
(singular) terms are dominant. Although integration errors can
generally be reduced by increasing the order of the quadrature
routines, doing so arbitrarily without consideration of the actual
accuracy requirements can result in a significant computational
penalty.

The final source of error relates to the solution of the system of
equations for the unknown boundary quantities. For a well-
conditioned coefficient matrix, this error is negligible. However, at
certain characteristic frequencies that depend on the problem
geometry, the solution may no longer be unique. This non-
uniqueness has no physical analogy and is simply a mathematical
artefact of the integral formation; the objective problem itself has
a unique solution. These (so-called) characteristic frequencies
occur at the resonant frequencies of the corresponding interior
Dirichlet problem (the non-uniqueness problem occurs because
the interior and exterior operators are adjoint [21]). The most
mathematically robust way to overcome this difficulty is to use
the Helmholtz integral equation in combination with its normal
derivative. The latter conversely suffers from non-uniqueness at
the resonant frequencies of the interior Neumann problem. Burton
and Miller showed that the two integral equations share only one
common solution and thus their combination will overcome the
mathematical uniqueness difficulty [22]. However, the normal
derivative integral equation contains a hyper-singular integral
kernel which is numerically formidable (the integral does not
exist because of divergent terms in the primitive function of the
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integrand [23]). A large body of literature exists on the
regularisation and computation of these integrals, which remains
a somewhat problematic task [24–26].

The non-uniqueness problem may also be overcome via
the combined Helmholtz integral equation formulation (CHIEF)
proposed by Schenck [27]. Here, a small additional set of
equations are formulated by collocating the evaluation point at
a series of so-called ‘CHIEF points’ from the interior of the
scattering body. These additional constraints provide an over-
determined system of equations that is typically better condi-
tioned. The success of the CHIEF method is reliant on avoiding
interference between the selected internal CHIEF points and the
nodal surface of the interior Dirichlet eigen-functions. If a CHIEF
point falls on this nodal surface, the additional equation does not
provide a linearly independent constraint. Generally only a small
number of ‘effective’ CHIEF points are needed [28–31]. However,
the density of the interior nodal surfaces increases with wave-
number and for a scatterer of arbitrary geometry the location
of these surfaces is not known a priori. The inherent difficulty in
the CHIEF method is thus the systematic selection of CHIEF points,
although, several methods for improving the robustness of the
CHIEF method have been proposed [32–35].

The purpose of the current paper is to provide a practical and
contiguous analysis of the various sources of error in the solution
of acoustic scattering problems using the BEM. The analysis is not
mathematically formal in nature, but rather is designed to give
BEM users a functional indication of factors affecting the
computational accuracy. In particular, the accuracy of the various
numerical procedures that is required to maintain a given global
error bound is considered. In Section 2, a brief overview of the
numerical implementation of the direct collocation BEM for the
2D Helmholtz equation is given. This provides the context for later
discussion. While the integral equations may be derived using
other formulations (e.g., the indirect BEM), and the boundary
quantities solved using other weighted residuals (e.g., the
Galerkin method), the direct collocation BEM remains a popular
approach for acoustical problems. For example, this formulation
has particular relevance to the design of acoustic barriers
(e.g., [36,37]); a familiar problem in acoustics. In Section 3, the
element-wise convergence of numerical quadrature routines is
examined. Both regular, weakly singular, and nearly weakly
singular integral kernels are considered. In Section 4, the global
effect of the boundary discretisation is examined using a
cylindrical scatterer as an example. This discussion is extended
in Section 5 to include the effect of boundary singularities.
In Section 6, the accuracy of the integration routines required
to maintain a given global error bound is established. These
results are then summarised into a set of empirical guidelines and
applied to a final scattering example. Discussion and summary are
given in Section 7.

Finally, before beginning the analysis, it is appropriate to
briefly discuss the expectation of accuracy required for engineer-
ing problems. While a particular numerical solution may have
converged to a high degree of accuracy, it is unlikely many of the
classical acoustic assumptions (uniform boundary conditions,
a non-refracting atmosphere, etc.) are unequivocally met
by the corresponding physical situation. In this regard, it is not
appropriate to recommend parameter guidelines that guarantee
the absolute convergence of the numerical problem when
the physical counterpart may contain uncertainties of a much
higher percentage. On the other hand, numerical methods
are often used to compare subtle design and scenario variations.
In this case, large error values make it difficult to quantify
the effect of these changes. Considering these factors, here
a global BEM error requirement of �1% will be regarded as
appropriate.
2. Numerical implementation of the direct collocation
method for the Helmholtz equation

2.1. Formulation of the boundary integral equations

For small amplitude time-harmonic disturbances of a homo-
geneous and inviscid fluid, the spatially dependent excess
pressure p is governed by the Helmholtz equation r2p+k2p ¼ 0.
Here k is the wave-number, and a harmonic time component of
the form e�iot has been assumed. The subsequent formulation
of the Helmholtz integral equation using Green’s second identity
for the harmonic operator (based on the Gauss–Green theorem) is
well known (e.g., [21]) and may be expressed as

pinðPÞ þ

Z
S

pðQ Þ
@GðQ jPÞ

@nQ
� GðQ jPÞ

@pðQ Þ

@nQ

� �
dS

¼

pðPÞ ; P 2 V

1

2
pðPÞ ; P 2 S

0 ; P=2ðV [ SÞ

;

8>>><
>>>: ð1Þ

where pin(P) is a source term, P the evaluation point, Q an
integration point on the boundary surface S, and G(Q|P) the
fundamental solution (Green’s function) for the acoustic domain
of interest. The solution for PAS assumes the variation of the
boundary is smooth which always holds at the nodal locations for
discontinuous elements. In 2D free-space, the Green’s function is
an outgoing cylindrical wave given by G(Q|P) ¼ (i/4)H0

(1)(krQP) and
represents the effect experienced at P of a source at Q radiating
into the domain (or vice versa). Here rQP ¼ |rQ�rP|, and H0

(1) is the
Hankel function of the first kind of zero order. The source term in
2D free-space is similarly given by pin(P) ¼ PinH0

(1)(krSP), where rSP

is the separation radius between the source and evaluation
positions, and Pin is the source strength.

To reduce the number of unknown boundary quantities, the
Helmholtz integral equation is generally reformulated using a
surface boundary condition relating qp/qn to p. For acoustic
scattering problems, the Robin boundary condition is of most
interest

@p

@n
þ ikbp ¼ g; ð2Þ

and applies to the boundary of the scattering surface S within the
acoustic domain V. Here n is the normal vector of the boundary
pointing into the domain, and b the specific acoustic admittance
[see Fig. 1]. The function g is zero for stationary scattering
problems (passive boundary conditions) and non-zero for
radiation problems (active boundary conditions). When b ¼ 0,
Eq. (2) degenerates to a Neumann boundary condition.
2.2. Boundary collocation

Unless the acoustic quantities on the boundary surface are
already explicitly known, Eq. (1) cannot immediately be used to
solve for the pressure within the domain; these quantities must
first be calculated. To proceed, assumptions must be made about
the variation of the boundary quantities over each element. In the
collocation approach, the boundary quantities are assigned values
at a discrete number of nodal locations per element with the
remaining variation modelled using shape functions. If f is the
varying quantity, the local element coordinates are �1rxr1, and
the order of the boundary variation for f is amax (i.e., there are
a ¼ 1, 2,y,amax nodes per element), the variation of f over each
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Fig. 1. (a) Local element coordinates showing the node placement for discontin-

uous elements and the evaluation point Pi, and (b) an arbitrary scattering body

showing the mapping between global and local coordinates, and the element

normals.
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element can be written as

f ðxÞ ¼
Xamax

a
caðxÞfa; ð3Þ

where ca(x) and fa represent the shape function and the discrete
quantity value at the ath node on the element, respectively.
The quantity f may be either the varying pressure p(x) on the
boundary, or the geometric variables x(x) and y(x).

To find the pressure on the boundary surface, the evaluation
point P is then collocated at each of the boundary nodes Pi (where
i ¼ 1, 2,y, imax). Using Eq. (2), Eq. (1) now becomes

pinðPiÞ þ
X

j

Z
Sj

pðPjÞ
@GðrjiÞ

@nj
þ ikbjGðrjiÞ

� �
dS�

X
j

Z
Sj

gjGðrjiÞdS

¼
1

2
pðPiÞ; ð4Þ

where p(Pi) represents the pressure at the ith boundary node, the
integration point Q has been replaced with Pj, and p(Pj) represents
the pressure across the jth surface element Sj (where j ¼ 1,
2,y, jmax). This is related to the discrete nodal pressure values
using Eq. (3) [see Fig. 1(b)]. Note, the lower case i not used as a
subscript represents the imaginary unit.
Momentarily disregarding numerical singularities (which
occur when rji-0), the integrals within Eq. (4) are computed
using numerical quadrature. For regular Gaussian quadrature, this
gives

I ¼

Z 1

�1
f ðxÞJðxÞdx ¼

XK

w¼1

wwf ðxwÞJðxwÞ; ð5Þ

where K is the number of Gauss (integration) points, ww and xw the
weights and abscissas of the Gaussian quadrature of order w, and
J(x) represents the transformation Jacobian that maps the global
coordinate system onto the local quadrature coordinate system
�1rxr1. The Gaussian weights and abscissas can be computed
using Legendre’s orthogonal polynomials [38], or alternatively are
tabulated to a high degree of accuracy in many standard
textbooks. The transformation Jacobian is given by

JðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx

dx

� �2

þ
dy

dx

� �2
s

; ð6Þ

where x(x) and y(x) are also given by Eq. (3) using the continuous
shape functions of the required order.

Expanding the element-wise approximation of the boundary
quantities, the pressure on all imax nodes can then be solved using
the system of equations [(1/2)I�A]{p} ¼ {B}, where p is a vector
of the unknown pressure at each boundary node, I the identity
matrix, the coefficient matrix A is square and given by

Ai;ja ¼

Z 1

�1

@GðrjiðxÞÞ
@nj

caðxÞJðxÞdx

þ ikbj

Z 1

�1
GðrjiðxÞÞcaðxÞJðxÞdx; ð7Þ

and B is a source vector given by

Bi ¼ pinðPiÞ �
X

j

X
a

gj

Z 1

�1
GðrjiðxÞÞcaðxÞJðxÞdx: ð8Þ

Here bj and gj are the boundary condition parameters on the
jth element; recall there are imax nodes in total made up from jmax

elements each with amax nodes where the pressure is assigned.
As the element-wise approximation of the boundary geometry
within the integral kernels in Eqs. (7) and (8) is independent from
that of the pressure [i.e., the computation of the geometric terms
rji(x) and J(x) using Eq. (3) is not dependent on the ca(x) and amax

chosen to compute the boundary pressure], it is straightforward to
implement non-isoparametric elements.

The first integral term of Eq. (7) requires the normal derivative
of the Green’s function. This is computed by

@GðrjiðxÞÞ
@nj

¼
@GðrjiðxÞÞ
@rji

@rjiðxÞ
@nj

; ð9Þ

where the radial derivative of the 2D free-space Green’s function
is given by

@GðrjiðxÞÞ
@rji

¼ �
ik

4
Hð1Þ1 ðkrjiðxÞÞ; ð10Þ

the radial variable is computed using

rjiðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxjðxÞ � xiÞ

2
þ ðyjðxÞ � yiÞ

2
q

; ð11Þ

and the directional derivative is calculated by [see Fig. 1(b)]

@rjiðxÞ
@nj

¼ rrjiðxÞ � nj ¼ cosðnðxÞ � aðxÞÞ: ð12Þ
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Using the gradient of the geometry at x, the required angles a
and n are computed by

aðxÞ ¼ a tan 2ðyjðxÞ � yi; xjðxÞ � xiÞ

nðxÞ ¼ a tan 2
dyjðxÞ

dx
;
dxjðxÞ

dx

� �
þ
p
2
: ð13Þ

Once the pressure on the boundary has been calculated, Eq. (1)
may then be directly utilised to calculate the pressure at any
location within the domain. Note, in the examples given in the
following sections, only passive Robin and Neumann boundary
conditions are used [i.e., g ¼ 0 and Bi ¼ pin(Pi)]. While not directly
considered, the influence of the additional integral term in Eq. (8)
can be inferred from the discussion of the analogous term within
Eq. (7). The results for Dirichlet boundary conditions may be
similarly deduced.

2.3. Discontinuous shape functions

For the BEM examples presented here, discontinuous elements
were used as given in Ref. [7]. For constant elements, amax ¼ 1 and
the shape function is simply c1(x) ¼ 1 (the pressure is constant
across the element). For linear elements, amax ¼ 2 and the shape
functions are given by

c1ðxÞ ¼
1

k1 þ k2
ðk2 � xÞ

c2ðxÞ ¼
1

k1 þ k2
ðk1 þ xÞ: ð14Þ

Similarly, for parabolic (quadratic) elements, amax ¼ 3 and the
shape functions are given by

c1ðxÞ ¼
k2

k ðx� k2Þx

c2ðxÞ ¼
k1 þ k2

k
½k1k2 þ ðk2 � k1Þx� x2

�

c3ðxÞ ¼
k1

k
ðxþ k1Þx: ð15Þ

In Eqs. (14) and (15), k1 and k2 represent the offset of the outer
nodal points from the element origin (with 0ok1,k2r1) [see
Fig. 1(a)]. For parabolic elements, the central node is assumed to
be located at x ¼ 0, and k ¼ k1k2ðk1 þ k2Þ. The optimum values of
k1 and k2 are given by the zeros of Legendre polynomials [12].
This yields k1,2 ¼ 0.5774 for linear and k1,2 ¼ 0.7746 for parabolic
boundary variations (a similar analysis to that presented in
Ref. [12] was also used here to confirm these as the optimum
nodal locations for one-dimensional elements). If the boundary
nodes are placed at the extremities (i.e., k1,2 ¼ 1), Eqs. (14) and
(15) yield the continuous shape functions discussed by many
authors.

2.4. Overcoming the non-uniqueness problem

For the BEM examples presented here, the non-uniqueness
problem was overcome using an extension of the CHIEF method
(described herein) [35]. Along with the boundary, a small number
of representative interior coordinates are discretised. A larger
array of potential CHIEF points is then derived by linearly
interpolating between these coordinates. The system of equations
is first solved without any CHIEF points, and the uniqueness of the
solution monitored using the matrix condition number [39]. If a
large condition number is detected, the solution at each of the
CHIEF points is computed. The best CHIEF points are then selected
based on the maximum deviation of the pressure from zero. This
eliminates points that lie on an interior nodal surface. The system
of equations becomes

1

2
I� A

0� AChief

2
64

3
75 p
� �
¼

B

BChief

( )
; ð16Þ

and is re-solved using a Lagrange or least squares procedure. Here
AChief and BChief are given by Eqs. (7) and (8), respectively, with the
ith element node replaced by the nth CHIEF point. As the primary
computational effort in the BEM is associated with the filling
of the coefficient matrices (and not their solution), this approach
does not significantly increase the total computation time.
Moreover, as no additional functions are required for the
evaluation of the CHIEF terms, it is simple to implement. For the
analyses presented here, this approach worked robustly. From this
point it is assumed that the non-uniqueness problem has been
adequately addressed; no further discussion is given.
3. Element-wise convergence of numerical
quadrature routines

3.1. Computation of regular integrals

Before beginning to examine the effect of the boundary
discretisation on the overall convergence of objective problems,
it is constructive to revisit the local convergence of the element-
wise numerical integration. For regular integrals, the superiority
of Gaussian type quadrature routines over other numerical
integration techniques is well established (e.g., [8]). With K

Gauss-points, Gaussian quadrature is able to exactly integrate
polynomials of up to order 2K�1. To illustrate the effect of the
number of Gauss-points on integration accuracy, a simplification
of the second integral in Eq. (7) is taken [see Fig. 1(a)]. Here the
point Pi is assumed to be within the local domain at (xi,mi) and the
integration is performed on the x-axis over the interval [�1,1].
This yields the following element-wise integration

I ¼

Z 1

�1
Hð1Þ0

�
k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xiÞ

2
þ m2

i

q �
dx: ð17Þ

The length of the integration element in local coordinates is 2,
and the wave-number k is set to 1. This corresponds to
approximately 3 elements per wavelength. However, modification
of the element length does not have a strong effect on the
accuracy of the integration; for more elements per wavelength
the variation of the Hankel function across the interval is reduced.
The error metric is taken as the percentage variation from a
reference solution computed using adaptive numerical integration
to a precision of �10�20. Fig. 2(a) shows how the error in the
integration of Eq. (17) [using Eq. (5)] changes as the number of
Gauss-points is increased for (xi,mi) ¼ (0,10). The convergence
for k ¼ 0.3 (�10 elements per wavelength) is also shown for
comparison. The error converges to machine precision very
rapidly and the use of only 6 Gauss-points is sufficient to
achieve a high level of integration accuracy.

3.2. Computation of weakly singular integrals

The primary numerical difficulty in the implementation of the
direct collocation BEM is the evaluation of singular integrals. An
integral is singular if at some point in the integration domain the
integrand becomes infinite. Such integrals occur in the BEM when
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Fig. 2. (a) The error convergence of a regular integral with the total number of

Gauss-points K for two different wave-numbers, and (b) the number of Gauss-

points K required to maintain a given maximum error bound as the evaluation

point Pi ¼ (0,mi) gets closer to the integration element.
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the evaluation point lies within the integration element, and thus
the distance rji-0 within the Green’s function and its derivatives
[40]. Examining the integrals within the Helmholtz integral
equation shown in Eq. (1) [or Eq. (7)], the integral of the Green’s
function derivative remains regular [qG/qr is O(1/r), but qr/qn is
O(r)]. Conversely, the Green’s function integral is weakly singular.
Weakly singular integrals converge in the regular Riemann sense
as the integral is continuous at the singular point (in contrast to
strongly singular integrals which are unbounded at the singular
point, i.e., the integral does not exist).

As the point Pi approaches the integration element, the integral
solution becomes dominated by the nearby singularity. This can
be illustrated by again using the simplified boundary integral
given in Eq. (17) and gradually moving Pi closer to the element. To
maintain a given level of accuracy, an asymptotically increasing
number of Gauss-points are required. This is shown in Fig. 2(b),
where nearly three times as many Gauss-points must be used
when Pi is within half an element length of the integration
element. As Pi continues to approach the element, the required
increase in Gauss-points becomes excessive; if Pi lies on the
element, the integral becomes weakly singular and the regular
Gaussian quadrature is rendered ineffective for practical numbers
of Gauss-points.

The numerical computation of singular integrals can be
improved using a number of procedures. These include analytical
evaluation [41,42], division of the interval about the singularity
[43], subtraction of the singularity [42], special quadrature
routines [44], and the use of non-linear coordinate transforma-
tions [45–49]. Each method has its own particular advantages and
disadvantages depending on the type and order of the boundary
elements used, and the form of the singular integral. The latter is
also dependent on the partial differential equation being solved by
the BEM. Here the analysis is restricted to non-linear coordinate
transformations. Such transformations map the integration inter-
val onto itself using a polynomial. They have the property of a null
Jacobian at the singularity which weakens the singularity order.
The transformations can be directly used with standard Gaussian
quadrature routines, minimising the changes required to the BEM.
Moreover, their application is not restricted to certain element or
singularity types, making them extremely versatile.

Of the multitude of available non-linear coordinate transfor-
mations, that proposed by Sato and colleagues is amongst the
most efficient [43]. The original Sato transformation of order sZ2
is given by

xðgÞ ¼ x �
x

2s�1
ð1� xgÞs; ð18Þ

where g and x represent the original and remapped Gauss-points,
respectively, and the location of the singularity x must be 71 (i.e.,
this particular transformation is only valid for endpoint singula-
rities). For interior singularities, the interval must first be
partitioned at the singularity, the transformation applied to both
partitions, and the intervals then mapped back to [�1,1] [43]. For
an arbitrary interior singularity located at �1oxo1, this yields
the following general transformation
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Even for algorithms suitable for interior point singularities,
partitioning can often improve the accuracy of the solution for a
given number of overall Gaussian operations [43]. Note, that for
an endpoint singularity, the Sato transformations for s ¼ 2, 3 are
identical to the popular transformations proposed by Telles [45].

The efficiency of the Sato transformation for weakly singular
integrals with a logarithmic singularity and real-valued kernels
has been investigated previously [43]. However, the application of
coordinate transformations for complex valued kernels does not
always yield the expected results. For example, Elliott and
Johnston comment that their sinh transformation must only be
applied to the imaginary component of the Hankel function [50].
The efficiency of the Sato transformation is examined here by
computing Eq. (17) when Pi lies on the integration element (i.e.,
mi ¼ 0 and 0rxir1). Fig. 3(a) illustrates the error in the integral
solution against the location of the singularity x. As expected, the
regular Gaussian quadrature is unable to compute the integral
accurately, even using 20 Gauss-points. The application of the
3rd-order Telles transformation [45,47] for the same number of
Gauss-points reduces the integration error by several orders of
magnitude. If the integral is partitioned at the singularity and Sato
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Fig. 3. Effect of non-linear coordinate transformations on the error in the

computation of a weakly singular integral: (a) error variation with the location

of the singular point x using a total of 20 Gauss-points, and (b) error convergence

for an origin singularity with the number of Gauss-points K per partition.
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transformations of increasingly higher order are applied (still
using a total of 20 Gauss-points, 10 per partition), the error is
decreased further. This illustrates the usefulness of the
transformation.

The convergence of the Sato transformation with the number
of Gauss-points in each partition for various transformation
orders is illustrated in Fig. 3(b). The transformations first display
exponential followed by algebraic convergence. For small num-
bers of Gauss-points, the lowest level of error is not necessarily
given by the transformation with the highest order; it is preferable
to utilise the transformations within the second region of
convergence. This is also evident in Fig. 3(a), where for 10
Gauss-points per partition, the 6th-order transformation produces
a higher level of error than the 5th-order transformation. As
higher-order transformations strongly cluster the Gauss-points
around the singularity, if only a small number of Gauss-points are
used this does not leave sufficient points distributed across the
remainder of the integration interval to compute it accurately. A
similar situation occurs for singularities near the element end-
points; if the number of Gauss-points used in each partition are
divided evenly, the integration over the longer interval may not be
computed with comparable accuracy. This is visible in Fig. 3(a)
where the higher-order Sato transformations display a positive
gradient as x-1. Care must also be taken to avoid large numbers
of Gauss-points with high transformation orders, as this can
produce unstable behaviour [43] (see also discussion in [51]). For
the purpose of dissociating integration and discretisation errors, a
5th-order Sato transformation coupled with 20 Gauss-points in
each partition is sufficient to ensure the accurate computation of
weakly singular integrals (while avoiding the instabilities of the
transformation).

The singularity within the Hankel function kernel arises
because of the origin singularity of the Bessel function of the
second kind. Therefore, the coordinate transformation only needs
to apply to the singular part of the Hankel function. However, for
higher numbers of Gauss-points [the second region of conver-
gence shown in Fig. 3(b)], there is no difference in the integration
error if the integrals are computed using separated quadrature
routines (regular and singular, respectively) for Bessel functions of
the first and second kind. This is not true when using small
numbers of Gauss-points. The extreme clustering of the integra-
tion points about the singularity means that the regular part of
the integral is computed less accurately than if the points had
been distributed evenly. In this case, the transformation should
only be applied to the singular component of the integral.
A similar effect is described by Elliot and Johnson in relation
to their sinh transformations used for nearly weakly singular
integrals [50].

Finally, it is important to note that the primary motivation
behind using non-linear coordinate transformations is that the
Gaussian quadrature routines (including the number of Gauss-
points) used for regular integrals can also be utilised for singular
integrals with no modification [52]. The question of whether
singular integrals can be computed with sufficient accuracy using
6 Gauss-points (which evidently is adequate to compute regular
integrals accurately) will be discussed in Section 6. As the
remaining integral term within Eq. (7) is regular, the location of
the evaluation point Pi in relation to the element does not affect
the convergence of the quadrature routine and thus no modifica-
tion is required.
3.3. Computation of nearly singular integrals

While the non-linear coordinate transformations just dis-
cussed are able to compute weakly singular integrals successfully,
when the evaluation point Pi is near (but not on) the integration
element these transformations do not necessarily provide the
same advantages [53]. For nearly weakly singular integrals, the
transformations must instead contain a modifiable Jacobian that
is close to (but not exactly) zero at the nearly singular point. The
strength of the quadrature point clustering can then be related to
the strength of the near-singularity via the distance between the
evaluation point and the integration element. (Note, although
element subdivision is also commonly utilised for dealing with
nearly singular integrals, these routines are not computationally
economical and additionally restrict the order of the function that
can be exactly computed for a given number of total Gauss-
points.).

The most widely used non-linear coordinate transformation for
nearly weakly singular integrals was proposed by Telles [45,47].
This utilises an optimisation parameter r̄ that is dependent on
both the order of the singularity and the closest distance D from
the element to the near singular point [45,47]. Using the
optimised r̄ values given in Ref. [47], an appropriate expression
for r̄ dependent on the distance parameter D is given by
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r̄ ¼ e4(�2.2D2
�4.8D�0.34)�1. This may be used in conjunction

with Telles adaptive transform to adjust the optimisation para-
meter automatically. However, previous investigations have
illustrated the strong sensitivity of the integration accuracy to
the optimisation parameter [23], and recently other transforma-
tions suitable for computing nearly weakly singular integrals
have also been proposed [54,55]. In particular, the sinh transfor-
mation by Johnston and Elliot provides a useful alternative
[50,55,56].

The effect of these transformations on the accuracy of nearly
singular integrals can again be examined using the integral
simplification given in Eq. (17). Fig. 4(a) illustrates how the error
changes when the evaluation point approaches the centre of the
element [i.e., (xi,mi) ¼ (0,D)] and Fig. 4(b) the right-hand side [i.e.,
(xi,mi) ¼ (1+D,0)]. Both the sinh and Telles transformations provide
a significant improvement in integration accuracy compared to
the regular quadrature (each using a total of 20 Gauss-points,
except for the K ¼ 6 reference). It is also clear that if the nearly
singular point is located towards the element endpoints, the effect
on the integration accuracy is reduced. In both cases, the sinh

transformation provides a reasonable improvement on Telles’
transformation.

The convergence of these transformations with the number of
Gauss-points is provided in Fig. 4(c) (Telles), and Fig. 4(d) (sinh).
Fig. 4. Effect of non-linear transformations on the error in the computation of a nearly w

D from the integration element for an origin singularity, (b) similarly for an endpoint sin

of Gauss-points K for various locations of the evaluation point, and (d) similarly for th
Again, for low numbers of Gauss-points, it is recommended to
only apply the transformation to the singular part of the Hankel
function integral kernel. Similarly, for higher numbers, this has a
negligible effect on accuracy. As the parameters needed for the
sinh transformation may be pre-computed using the boundary
geometry, it is legitimate to always use the transformation within
the computation of the second integral term of Eq. (7). This does
not significantly affect the computational time, as any use of the
sinh transformation already requires the computation of the
element-wise arrays of D and x. Again, for the purpose of
dissociating integration and discretisation errors a sinh transfor-
mation with 20 Gauss-points is sufficient to accurately compute
the encountered nearly weakly singular integrals.

Before beginning the next part of the analysis, it is useful to
note that other numerical procedures could alternatively be used
to compute the required element-wise integrations. In the context
of the wider investigation, this is of no concern, as it is also the
absolute level of accuracy required by these routines that is also
under consideration. Gaussian quadrature and non-linear coordi-
nate transformations simply provide an efficient and effective way
of computing these integrals. Moreover, by modifying the total
number of Gauss-points they also provide a systematic way for
the accuracy (and correspondingly, the computational expense) to
be altered.
eakly singular integral: (a) error variation with the distance of the evaluation point

gularity, (c) error convergence of Telles’ non-linear transformation with the number

e sinh transformation.
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Fig. 6. Global error convergence with the number of nodes per wavelength

for constant, linear, and parabolic elements for a cylindrical scattering problem:

(a) using parabolic shape functions for the geometric discretization, and

(b) similarly using linear shape functions.
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4. The effect of discretisation error

Now that numerical routines for computing element-wise
integration have been discussed, it is appropriate to investigate
the effect of element type and boundary discretisation on the
global error of an objective problem. A suitable 2D reference is the
scattering of an infinite line source by a parallel infinite cylinder.
Using the expansion of a uniform outgoing cylindrical wave (via
Fourier transformation) by Morse and Ingard [57], an analytical
expression for the total pressure surrounding the scatterer can be
derived. For a passive Robin boundary condition this is given by

p ¼
X1
n¼0

Pien Jnðkrinf Þ �
J 0n ðkaÞ þ ibJnðkaÞ

H 0
n ðkaÞ þ ibHnðkaÞ

Hnðkrinf Þ

	 


�HnðkrsupÞcosðnjÞ; ð20Þ

where rinf is the infimum of (r,r0) (i.e., the smaller of r and r0), rsup

the supremum of (r,r0) (i.e., the larger of r and r0), e the Neumann
factor given by en ¼ 0 ¼ 1 and enZ1 ¼ 2, Jn the Bessel function of the
first kind, the 0 operator represents the radial derivative, and the
other parameters are defined in Fig. 5 and previous sections
(similar analytical reference problems also exist in 3D [58]).

To examine the convergence of the BEM for various element
orders, the direct collocation BEM described in Section 2 is used to
numerically compute the domain pressure at a series of near-field
evaluation points. These reference points are positioned evenly on
concentric circles of radii 2a, 3a, and 4a, with 32 points on each.
The error metric is taken as the percentage error relative to the
analytical solution [given by Eq. (20)] averaged across these
locations. While this choice of error metric is somewhat arbitrary,
the utilised reference points are representative of the data often
required from acoustic scattering analyses. The use of other
metrics may give slightly varying absolute error values, however,
the observed trends remain robust. For the present investigation,
it is sufficient to use a Neumann boundary condition with b ¼ 0
(i.e., a rigid cylinder) as this removes the contribution of the
singular integral from Eq. (7). Similarly, the use of parabolic
continuous shape functions to model the boundary geometry
dissociates errors in the discretisation of the curved boundary.

The global error convergence with the number of nodes per
wavelength (rather than elements per wavelength) for constant,
linear, and parabolic variations of the boundary quantities is
shown in Fig. 6(a). This allows a legitimate comparison of the
accuracy across differing element orders. A non-dimensional
wave-number of ka ¼ 16 (with r0 ¼ 20) is used to allow a
smooth variation of the corresponding number of elements
required. As expected, the refinement method exhibits an
algebraic convergence that is related to the element order [8].
Fig. 5. Infinite cylinder reference problem. The source is located on the positive

x-axis and the evaluation position is denoted by P. There are 3�32 evaluation

positions used to compute the error metric spaced evenly on concentric circles

with radii of 2a, 3a, 4a.
For this smoothly varying geometry, the application of 6 constant
elements per wavelength produces a global error metric in the
region of 1%. This corresponds to the recommendation commonly
given for engineering applications. For the same computational
expense, the use of parabolic elements reduces this error to
approximately 0.2%; to yield 1% error requires only 4 nodes per
wavelength.

For comparison, Fig. 6(b) shows the analogous results using
linear continuous shape functions to describe the variation of the
boundary geometry. There is no longer an advantage in increasing
the number of nodes per element. In this case, the error in
the geometric discretisation becomes the limiting factor in the
convergence. For curved objects, it is therefore strongly recom-
mended that parabolic shape functions are used to model the
boundary geometry.

5. The effect of geometric discontinuities

The cylindrical scatterer examined in the previous section has
a very regular geometry, and consequently, a smoothly varying
surface pressure. While this allows a useful comparison to an
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analytical solution, it is not particularly representative of objective
BEM problems. When the boundary contains abrupt changes or
discontinuities in the profile or surface properties, the resulting
surface pressure can vary rapidly. In the case of discontinuous
elements, the continuity of the surface pressure across these
singularities is identifiably not enforced. This can create large
discontinuous jumps in the boundary quantities which in turn
reduces the accuracy of the boundary integration. To illustrate the
effect of boundary singularities on convergence and accuracy, it is
Fig. 7. Irregular scatterer with discontinuities in both the boundary shape and

surface properties. The solid lines represent rigid boundaries, and the dashed lines

absorbing boundaries with an admittance of b ¼ 0.5�0.5i.

Fig. 8. (a) Converged surface pressure for kd ¼ 2, and the approximations made by (b) pa

of total nodes.
useful to examine a more complex scattering object as shown in
Fig. 7. This is a rectangle of dimensions d�1.5d with a triangular
cavity and a discontinuous surface admittance (denoted by the
broken lines). The boundary changes are denoted a, b,y, g and the
source is taken to be located at (x,y) ¼ (20d,0).

Fig. 8 shows the surface pressure for kd ¼ 2 using parabolic
[Fig. 8(b)], linear [Fig. 8(c)], and constant [Fig. 8(d)] boundary
elements with approximately the same number of total nodes.
Continuous linear shape functions are used to model the
geometric variation. The converged surface pressure is shown in
Fig. 8(a). It is clear, at least visually, that higher-order elements
approximate the surface pressure more closely. Fig. 9(a) illustrates
the global error convergence for the three examined element
orders with the number of nodes per wavelength. The same error
metric as in Section 4 is used, but with the reference points
positioned on concentric circles of radii 1.5d, 2.5d, and 3.5d.
Increasing the element order still provides an increase in accuracy,
but the boundary discontinuities eliminate the convergence
advantages. For parabolic elements, 4 nodes per wavelength
remains adequate to maintain a global error level around 1%.

If a higher level of accuracy is required, simple a priori mesh
grading techniques are often sufficient to improve the global error
convergence (and thus computational efficiency) with the number
of nodes per wavelength. Instead of dividing the boundary sides
into l ¼ 0, 1,y, L uniformly spaced divisions (i.e., for a side defined
by 0rZr1, the divisions are given by Zl ¼ l/L), the elements are
graded towards an endpoint singularity based on a grading
parameter qZ1, where Zl ¼ |b�(b�l/L)q|, and b ¼ 0 or 1 for
singularities located at Z ¼ 0 or 1, respectively.
rabolic, (c) linear, and (d) constant elements with approximately the same number
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Fig. 9. Error convergence with the number of nodes per wavelength for constant,

linear, and parabolic elements for an irregular scatterer; (a) using an evenly

divided mesh, and (b) using an a priori mesh grading with q ¼ 2.
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For the example used here, each boundary length (i.e., ab
�!

, bc
�!

,
etc.; see Fig. 7) has boundary disparities at both endpoints. The
lengths are thus first divided into two, and the elements evenly
graded towards the discontinuities. As this is only a variation to
the input mesh, no modification to the BEM is required. The
modified error convergence for q ¼ 2 is shown in Fig. 9(b).
For higher numbers of nodes per wavelength, the grading has
restored the convergence of linear elements and improved that
of the parabolic. Note, if high levels of accuracy are required for
particularly discontinuous boundaries, adaptive mesh refinement
procedures can provide a more notable enhancement to the
solution convergence. Such an approach removes the need to scale
meshes arbitrarily without a priori information about the surface
quantity variation. However, the corresponding increase in
computational effort may be disproportionate considering the
small number of nodes per wavelength typically required for
engineering-type accuracies.
6. The effect of integration error

In Section 3, high-order quadrature routines were established to
compute the required element-wise integration tasks accurately.
In the subsequent sections, these were utilised to dissociate
integration errors from the discretisation errors under examina-
tion. It is now important to establish the actual integration
accuracy that is required for a given global error constraint. The
appropriate quadrature complexity can then be selected accord-
ingly, minimising any unnecessary computational expense.

Fig. 10 illustrates the relationship between the global error
and the integration accuracy for the irregular scatterer (and error
metric) discussed in Section 5 [Fig. 10(a) and (b)], and the
cylindrical scatterer discussed in Section 4 [Fig. 10(c) and (d)].
Parabolic shape functions are used to describe the boundary
quantities, with linear (irregular) and parabolic (cylinder) shape
functions to describe the geometric variation. The integration
accuracy is adjusted by polluting the result of each quadrature
computation with a random number (scaled to a particular
maximum). Fig. 10(a) and (b) correspond to independent
adjustment of integration accuracy for regular and weakly
singular integrals, respectively, with the alternate parameter not
being modified. The remaining plots correspond to the adjustment
of integration accuracy for regular integrals only, using an
absorbent [Fig. 10(c)] and a rigid [Fig. 10(d)] cylinder. For each
plot, 10 curves are displayed using 3 to 12 nodes per wavelength
(higher numbers of nodes per element correspond to lower
curves).

It is immediately evident that the global error metric has
a stronger dependence on regular integration accuracy than
weakly singular integration accuracy [Fig. 10(a) and (b)]. The
exact dependence on the latter is governed by the dominance of
the diagonal terms in the coefficient matrix A. This is reliant
on the shape of the scatterer and the imposed surface boundary
conditions. However, the explanation for the preferential
dependence seen here is more straightforward. Weakly singular
integrals are computed during the initial calculation of
the boundary quantities (via collocation) but not during the
calculation of the pressure within the domain. Regular integrals
are involved in the computation of both. As the utilised error
metric consists of points within the scattering domain, the
pollution of the regular integration computations has a larger
effect.

For the cylindrical scatterers [Fig. 10(c) and (d)], the error
dependence is analogous, although, a more rapid error conver-
gence is evident with the number of nodes per wavelength, and
the absolute dependence on integration accuracy is slightly
increased. This is due to the smooth cylindrical geometry (there
are no boundary discontinuities). An increase in global error with
an increase in the number of nodes per wavelength can also be
seen for very low levels of integration accuracy. Overall, the
absolute integration accuracies required to maintain a given
global error bound are reasonably low. This requirement is
systematically increased when the number of nodes per wave-
length or the element order are increased.

For the scattering examples investigated here, completely
removing compensation for nearly weakly singular integrals has
no observable effect on accuracy. Evidently, the decrease in
integration accuracy for the small number of nearly weakly
singular kernels is not sufficient to affect the global error values.
In the context of the discussion given in Section 3, the strength of
the near-singularity for adjacent elements of identical size is low.
Moreover, there are only a small number of vertices in relation to
the number of elements distributed on planar surfaces. Conse-
quently, for the types of boundary meshes considered, the
inclusion of distinct routines for the computation of nearly
weakly singular integrals is not required. Although, for boundary
meshes with large element length disparities, this may no longer
be true (the distance to the nearest node in relation to the element
length may become very small).
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Fig. 10. Global error changes with: (a) adjustment of the regular integration accuracy for the irregular scatter shown in Fig. 7 for kd ¼ 8, (b) similarly for adjustment

of the weakly singular integration accuracy, (c) adjustment of the regular integration accuracy for the cylindrical scatterer shown in Fig. 5 for ka ¼ 8 and b ¼ 0.5�0.5i, and

(d) similarly for b ¼ 0. The 10 curves shown in each plot correspond a varying number of nodes per wavelength from 3 to 12.
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At this point it is constructive to collect the results of the
current and previous sections into a set of empirical BEM
guidelines. For a global error requirement of �1%, the appropriate
discretisation and computational parameters are:
�
 a uniform boundary mesh with 4–6 nodes per wavelength
(using discontinuous parabolic elements; see Figs. 6 and 9);

�
 and, 6 point Gaussian quadrature for the computation of

regular integrals, with the application of a 4th-order Sato
transformation for weakly singular integrals [see Figs. 10, 2
and 3]. No treatment is required for nearly weakly singular
integrals.
To illustrate the efficacy of these guidelines, a final scattering
example is taken as shown in Fig. 11(a). The change in domain
pressure at two arbitrary locations with the non-dimensional
wave-number kd (using the parameters above with 4 nodes per
wavelength) is shown in Fig. 11(b). The converged numerical
result is shown for comparison. For these particular domain
points, the use of 4 nodes per wavelength restricts the error to
�2–5%; for 6 nodes per wavelength this is reduced to �1–3%.
Using the figures and analyses provided here, it is straight-
forward to derive similar guidelines for alternate global error
requirements.
7. Summary and discussion

The continued interest in the BEM as a computational analysis
tool over the last decade has predictably yielded a large number of
academic investigations into the methodology. New algorithms
and techniques have been proposed to extend the functionality of
the BEM and compute the numerical tasks with ever increasing
accuracy. On the surface, these developments appear intrinsically
useful. Indeed, the overall error in a BEM simulation is dependent
on both discretisation and computational errors, in addition to the
non-uniqueness problem. However, the exact accuracy require-
ments for each of the computational constituents is frequently
overlooked.

In this context, the discretisation and computational errors for
the direct collocation BEM are explored here in a necessarily
parallel fashion. First, methods to compute the required numerical
integration tasks using Gaussian quadrature and non-linear
coordinate transformations are discussed. In particular, the
accuracy and convergence of these routines for regular, weakly
singular, and nearly weakly singular kernels is established.
Subsequently, the effect of the boundary discretisation on global
error values is illustrated. Finally, the actual integration accuracy
required to maintain a given global error is considered. In the
context of the continued expansion of computational literature, it
is the latter that is most pertinent. For the BEM formulation and
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Fig. 11. (a) Irregular scattering example with discontinuities in both the boundary

shape and surface properties. The solid lines represent rigid boundaries, and the

dashed lines absorbing boundaries with an admittance of b ¼ 0.5�0.5i. (b) Domain

pressure at (x,y) ¼ (2,0) (upper curve) and (�20,0) (lower curve) for a point source

positioned at (20,0) assuming d ¼ 1. The crosses indicate the numerical results

using the parameter guidelines and the solid line the converged numerical result.
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acoustical scatterers examined here, the integration accuracy
requirements can be met with modest computational force. That
is, for engineering-type accuracies, the global error is over-
whelmingly dictated by the fineness of the boundary discretisa-
tion. Using the provided analyses, it is straightforward to extract
empirical parameter guidelines for a given global error require-
ment. This is particularly important for optimising the efficiency
of the BEM while maintaining a desired accuracy.
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