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Abstract. The reconstruction of images in photoacoustic to-
mography is reliant on specifying the speed of sound within
the propagation medium. However, for in vivo imaging, this
value is not normally accurately known. Here, an autofo-
cus approach for automatically selecting the sound speed
is proposed. This is based on maximizing the sharpness
of the reconstructed image as quantified by a focus func-
tion. Several focus functions are investigated, and their per-
formance is discussed. The method is demonstrated using
phantom measurements made in a medium with a known
sound speed and in vivo measurements of the vasculature
in the flank of an adult mouse. C©2011 Society of Photo-Optical In-
strumentation Engineers (SPIE). [DOI: 10.1117/1.3619139]
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Photoacoustic tomography is an emerging biomedical imag-
ing modality that is particularly useful for imaging vascular
features within small animals and humans.1 The technique is
based on the localized absorption of pulsed laser light, which
creates an increase in acoustic pressure via thermoelastic expan-
sion. By recording the temporal evolution of the acoustic waves
reaching the tissue surface, an image of the initial pressure dis-
tribution, and thus the regions of optical absorption, can then
be reconstructed.2 To perform this reconstruction, a value for
the sound speed within the tissue medium must be specified.
However, in many cases this value is not known. Although book
values for the range of sound speeds in soft tissue are readily
available, these vary between 1400 and 1600 m/s, depending on
the exact tissue composition.3 For example, a higher proportion
of lipids results in a relative decrease in the sound speed, while a
higher proportion of proteins results in a relative increase. This
range of observed sound speeds is sufficiently wide to defocus
the reconstructed image if the correct value is not selected.
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In practice, a manual optimization of the utilized sound speed
is often performed to maximize the sharpness of prominent fea-
tures visible within the reconstructed image. Such an optimiza-
tion assumes that the image features have intrinsically sharp
edges, at least in relation to resolution of the imaging device.
In the case of vascular features, this is generally a valid as-
sumption. The sound speed can thus be considered as a focus-
ing parameter that is modified based on a visual assessment of
the image sharpness. This has analogs in many other imaging
modalities in which a parameter optimization is performed to
focus the generated image, for example, in microscopy,4 opti-
cal coherence tomography,5 and computed tomography.6 Here,
a similar method to automatically select the sound speed that
maximizes the sharpness of reconstructed photoacoustic images
is proposed. This is based on an autofocus approach in which
a focus function is used to give quantitative assessment of the
image sharpness.

There is a large body of literature concerning the quantifica-
tion of image sharpness. In general, a sharp image will contain
more high-frequency information than its blurry counterpart,
however, there is no universally accepted measure for this dif-
ference. A variety of sharpness metrics (or equivalently, fo-
cus functions) have been proposed, including those based on
the image gradient, pixel count, power, variance, entropy, and
autocorrelation.4 The relative performance of these different
measures have been reviewed by a number of authors.4, 7–10 The
best functions produce a single maximum with a sharp peak
when the image is in focus, have a large range between the local
minima on either side of the maximum, and are robust to noise
in the image.4 Here, three focus functions that generally per-
form well—the Brenner gradient, the Tenenbaum gradient, and
the normalized variance—are applied to autofocusing in pho-
toacoustic tomography. (A full description of these metrics and
their relative merits can be found in the references.)

The Brenner gradient computes the difference between a
pixel value and its neighbors two points away. In two dimen-
sions, this may be written as

FBrenner =
∑
x,y

( fx+2,y − fx,y)2 + ( fx,y+2 − fx,y)2, (1)

where fx,y ≡ f (x, y) is the gray-level intensity of the pixel at
(x, y). The Tenenbaum gradient makes use of the Sobel opera-
tors used in edge detection and is given by

FTenenbaum =
∑
x,y

(g ∗ fx,y)2 + (gT ∗ fx,y)2, (2)

where the asterick denotes convolution and g is the Sobel oper-
ator given by

g =
⎛
⎝

−1 0 1
−2 0 2
−1 0 1

⎞
⎠ . (3)

The Brenner gradient may also be written in the form of Eq. (2),
where g is replaced with a centered finite-difference operator. In
comparison, the Tenenbaum gradient also applies a smoothing
perpendicular to the direction of the derivative. This increases
the computational complexity of the metric, however, it also
improves its robustness to image noise. Finally, the normalized
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Fig. 1 Variation in the value of the focus functions with sound speed
for a blood vessel phantom in intralipid.

variance quantifies variations in the pixel values about the mean
and can be written as

Fvariance = 1

μ

∑
x,y

( fx,y − μ)2, (4)

where μ is the mean pixel value. Each of the focus functions
also have 3-D equivalents, the form of which may be inferred
from the equations given here.

Given a particular focus function, the selection of the op-
timum sound speed (i.e., the sound speed that maximizes the
image sharpness as quantified by the focus function) progresses
as follows. First, the image is reconstructed using an initial esti-
mate of the sound speed. For in vivo imaging in soft tissue, this
will typically be in the range 1500–1550 m/s. Next, the value of
the sharpness metric is calculated using the focus function. The
sound speed is then systematically modified, the image recon-
struction repeated, and the value of the sharpness metric updated.
This process continues until a maximum is found. Because the
complete procedure can be automated, it can be considered anal-
ogous to a conventional autofocusing procedure.

To evaluate the performance of the different focus functions
and the autofocus approach more generally, photoacoustic mea-
surements of a blood vessel phantom in a 1.5% solution of
intralipid were reconstructed using sound speeds varying from
1400 to 1600 m/s (a detailed description of the experimental
measurements is given in Ref. 11, Sec. 3.C, Figs. 14–16). For
each value of sound speed, the image sharpness was quantified
using the three focus functions [Eqs. (1), (2), and (4)]. The met-
rics were calculated using both the 3-D voxel data and a 2-D
depth-direction (en face) maximum intensity projection (MIP).
The variation of the focus functions with sound speed is shown
in Fig. 1. The different metrics all demonstrate a maximum for
a sound speed of 1483 m/s. The corresponding sound speed in a
1.5% solution of intralipid at room temperature is similarly 1483
m/s.12 The excellent agreement between the optimum sound
speed determined by the focus functions and the actual sound
speed within the medium demonstrates the quantitative validity
of using an autofocus approach to select the sound speed.

It is evident from Fig. 1 that the metrics computed from the
2-D MIP perform better than those computed directly from the

3-D voxel data (they have a sharper and better defined maxi-
mum). This is because the MIP reduces the overall noise level
by isolating the strongest features within the reconstructed vol-
ume, in effect acting as an adaptive threshold. It is possible
to improve the performance of the 3-D metrics by also intro-
ducing a threshold parameter such that only the largest values
contribute.7 However, using the MIP avoids the task of selecting
the value of such a threshold. It is useful to note that in both
cases the metric will be dominated by the strongest features in
the reconstructed image. These will typically be surface-level
features unless compensation for optical and acoustic attenu-
ation is considered.13 By adjusting the region of the recon-
structed image used to compute the focus metric, it is also
possible to focus on particular features or depths within the
image or to create composite images using different sound
speeds.

An example of using the autofocus approach to select the
optimum sound speed in the reconstruction of an in vivo image
of the vasculature in the flank of an adult mouse is shown in
Fig. 2 (a detailed description of the experimental protocol is
given in Ref. 14). Again, the three focus functions are unimodal
and yield the same maximum, in this case at 1513 m/s (only the
metrics computed using the MIP are shown). A depth direction
(en face) MIP reconstructed using the optimum sound speed is
given along with an example of a defocused image produced
when the sound speed is overestimated by 5%. The focused
image shows a high level of detail in the vascular features down
to the pixel level. For quantitative comparison, the change in the
full width at half maximum (FWHM) of a representative vessel
within the MIP (denoted by the arrows) is shown in Fig. 2(a)
by the dotted line. The minimum FWHM corresponds with the
maximum of the focus function.

Although each of the three investigated focus functions give
virtually identical results for the examples presented here, the
gradient functions were found to consistently yield the best
performance when applied to a wide range of other photoacous-
tic measurements.11, 14 It is also important to note that for all
test cases, the MIP-derived focus functions remained unimodal
over the range of biologically relevant sound speeds (1400–
1600 m/s). Consequently, any standard optimization techniques
could be used to find the maximum. In the simplest case, a linear-
spaced parameter sweep could be performed. Alternatively, to
reduce the number of required reconstructions, direct-search or
derivative-based optimization methods could also be used. For
example, using the Brenner gradient and the golden section
search method with parabolic interpolation (fminbnd in MAT-
LAB), the maximum in Fig. 2(a) can be found in six iterations
(the steps are shown with dots).

In summary, a novel method for selecting the sound speed
used in photoacoustic reconstruction algorithms has been pro-
posed. This is based on an autofocus approach, which allows
the sound speed that maximizes the image sharpness (as deter-
mined by a particular focus metric) to be automatically obtained.
Although the approach works robustly, there are several items
that warrant further discussion. First, the use of an iterative re-
construction procedure inherently increases the computational
time. Fortunately, it is possible to minimize this burden using
standard optimization techniques. It may also be possible to only
reconstruct a small subsection of the image or to downsample
the measurement data used during the autofocus procedure.6 In
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Fig. 2 (a) Selection of the sound speed using an autofocus approach.
The three investigated focus metrics give the same value for the opti-
mum sound speed. The change in the FWHM of the vessel denoted
in (c) is also shown with a dotted line. (b) Defocused image recon-
structed using a sound speed overestimated by 5%. (c) Focused image
reconstructed using the optimized sound speed.

any case, given that a manual optimization is often performed,
the computational penalty of using the autofocus approach may
be justifiable.

Second, the method neglects the fact that the sound speed
distribution within the tissue may be nonuniform. In this case,
the autofocus approach will yield a kind of average value for
the sound speed that places the dominant features in the recon-
structed image in focus. For the purpose of generating sharp

photoacoustic images, this may be appropriate, even if the op-
timized sound speed does not correlate exactly with any partic-
ular tissue type. Moreover, the vast majority of reconstructions
of experimental data assume a constant sound speed, in which
case the autofocus approach is applicable. A possible extension
would be to use a parametrized sound speed map to account
for different tissue layers, for example, the skin and skull layers
encountered in in vivo mouse brain imaging.

Finally, it is important to note that the efficacy of the pro-
posed method is dependent on both the intrinsic content of the
reconstructed image in addition to any image artifacts (for ex-
ample, limited-view artifacts). If the reconstructed image is rich
in features and any image artifacts are comparatively small in
magnitude, then the autofocus approach will work correctly to
maximize the sharpness of the image features. However, if the
converse is true, then the autofocus approach may incorrectly
attempt to maximize the sharpness or the prevalence of edges in
the image artifacts.
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