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Estimating chromophore distributions from
multiwavelength photoacoustic images
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Biomedical photoacoustic tomography (PAT) can provide qualitative images of biomedical soft tissue with high
spatial resolution. However, whether it is possible to give accurate quantitative estimates of the spatially vary-
ing concentrations of the sources of photoacoustic contrast—endogenous or exogenous chromophores—remains
an open question. Even if the chromophores’ absorption spectra are known, the problem is nonlinear and ill-
posed. We describe a framework for obtaining such quantitative estimates. When the optical scattering distri-
bution is known, adjoint and gradient-based optimization techniques can be used to recover the concentration
distributions of the individual chromophores that contribute to the overall tissue absorption. When the scat-
tering distribution is unknown, prior knowledge of the wavelength dependence of the scattering is shown to be
sufficient to overcome the absorption-scattering nonuniqueness and allow both distributions of chromophore
concentrations and scattering to be recovered from multiwavelength photoacoustic images. © 2009 Optical
Society of America
OCIS codes: 170.5120, 100.3190.
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. INTRODUCTION
he biomedical imaging modality photoacoustic tomogra-
hy (PAT) has been developed over the past decade and
hown to be able to provide images of soft biological tissue
ith high spatial resolution (�100 �m resolution at
–10 mm depth) [1–5]. For contrast, it depends on the
istribution of optical absorption in the imaged tissue,
hich in turn depends on the abundance and location of

hromophores (light-absorbing molecules) within the tis-
ue. The chromophores may be endogenous, such as he-
oglobin or melanin, or exogeneous, such as dyes or

anoparticles that are introduced as contrast agents.
Because of the close relationship between the photoa-

oustic image and the tissue optical properties, much cur-
ent research in PAT is concerned with the idea that
pectroscopic methods could be applied to sets of photoa-
oustic images obtained at multiple optical wavelengths
o extract the distributions of the chromophore concentra-
ions [6–8]. The prospect of being able to obtain accurate,
uantitative, in vivo images of the distributions of endog-
nous chromophores and tagged molecular markers to
ub-mm resolution with nonionizing radiation is very en-
icing. However, extracting chromophore concentrations
rom PAT images is not trivial, and there have so far been
ew, if any, attempts to take into account the full nonlin-
arity of the problem and tackle the nonunique depen-
ence of PAT images on absorption and scattering.
Photoacoustic amplitude spectra are not, in general, di-

ectly proportional to the absorption coefficient spectra
hat gives rise to them. Were this the case, accurate esti-
ates of chromophore concentration could be obtained

traightforwardly by measuring photoacoustic images at
number of different wavelengths and using a simple,
1084-7529/09/020443-13/$15.00 © 2
inear, pixel-by-pixel spectral best-fit. As is now increas-
ngly being recognized, the spatially varying and
avelength-dependent distribution of light within the tis-

ue must be taken into account if accurate results are to
e achieved [7,9–16]. To do so, however, is complicated by
he need to estimate the nonuniform light distribution, as
t will depend on the distributions of both the optical ab-
orption and scattering coefficients of the tissue, neither
f which is known in advance.

This paper investigates the inversion that maps multi-
avelength photoacoustic images to chromophore distri-
utions. The general framework involves the iterative ad-
ustment of the optical coefficients of a numerical model of
ight transport until the calculated absorbed energy den-
ity at each wavelength matches the measured photo-
oustic images. Two approaches to this are (1) a two-step,
avelength-by-wavelength strategy that first recovers the
bsorption coefficient distribution from the photoacoustic
mage at each wavelength and then estimates the chro-

ophore concentrations spectroscopically from knowledge
f the chromophore spectra, or (2) a one-step, all-
avelengths-at-once approach in which the chromophore

oncentrations are recovered using a direct inversion
ithout the intermediate step to the absorption coeffi-

ients.
Section 2 introduces the light transport models rel-

vant to photoacoustic imaging, and Section 3 describes
terative algorithms based on these light models that are
apable of separating chromophore distributions when
he optical scattering distribution is known (wavelength-
y-wavelength strategies). An adjoint model is introduced
hat can be used for very efficient calculation of the func-
ional gradients [9,10]. Section 4 tackles the more general
009 Optical Society of America
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ase, when the scattering coefficient distribution is un-
nown and potentially nonuniform, using an all-
avelengths-at-once approach. In this case, the inversion

s ill-posed both because of the diffusive nature of light
ransport and, more severely, because of the “photoacous-
ic absorption-scattering nonuniqueness,” an example of
hich is given in Subsection 4.A. Section 4 describes and
emonstrates that this nonuniqueness can be overcome
sing prior information about the wavelength dependence
f the scattering within [17]. The singular-value decompo-
ition (SVD) of the Hessian matrix is used to demonstrate
hat the nonuniqueness has been removed, and a numeri-
al example is given in which a chromophore distribution
s recovered simultaneously with the unknown scattering
istibution using Newton’s method.

. LIGHT PROPAGATION IN SCATTERING
EDIA

n a wavelength-by-wavelength inversion strategy, the
rst step is to extract optical absorption coefficients from
hotoacoustic images, and the second is to use knowledge
f the chromophore absorption spectra in a spectroscopic
nversion for chromophore concentrations. To see how it

ight be possible to extract optical absorption (and scat-
ering) coefficients from a photoacoustic image, it is first
ecessary to understand how a photoacoustic image de-
ends on them. This section therefore briefly describes
he optical part of the photoacoustic forward problem:
ight propagation and absorption. (The second part of the
orward problem, the propagation and detection of the
coustic waves, is not covered here, but details can be
ound in the literature [4,18].)

. Absorbed Energy Density: Photoacoustic Image
n PAT, a short pulse of light, typically of nanoseconds du-
ation, illuminates a region of soft tissue. The light is
cattered and absorbed within the tissue, and can be de-
cribed by a fluence rate ��x , t� in W/cm2, where x�� is
point in the tissue and t is the time. For the examples

iven in this paper ��R2, but similar behavior is ex-
ected in R3; see Section 5. The photons that are not scat-
ered back out of the tissue are eventually absorbed by it,
nd when the dominant de-excitation pathway of the ex-
ited chromophores is via vibrational relaxation, the opti-
al energy is converted to heat. The absorbed power den-
ity, the rate at which the light energy is absorbed and
herefore the rate at which the tissue is locally heated, is
a� in W/cm3, where �a�x� is the optical absorption coef-
cient of the tissue.
The absorbed optical energy, or equivalently the depos-

ted heat energy, causes a temperature and pressure rise
ithin the tissue local to where the absorption took place.
s soft tissue is an elastic medium, this local pressure
ise propagates as an acoustic (ultrasonic) wave. Because
he optical propagation, absorption, and conversion to
eat typically occur on a timescale much shorter than the
echanical relaxation—i.e., the local tissue mass density

oes not change significantly until all the optical energy
as been converted to heat—it is often assumed therefore
hat, from the acoustic point of view, the heating occurs
nstantaneously. Under this assumption, the acoustic
ropagation can be modeled as an initial value problem,
nd the temporal variation of the fluence rate � is not di-
ectly relevant; the key quantity is its integral over time,
he fluence, ��x�=���x , t�dt in J/cm2. The total amount of
ptical energy deposited over the duration of the pulse,
he absorbed energy density, H in J/cm3, is then given by

H�x,t� = �a�x���x���t� = h�x���t�, �1�

here the spatial part of H is written as h�x�=�a�x���x�.
hermodynamic considerations [19] lead to the following
xpressions for the spatially varying temperature and
ressure rises T0 and p0, respectively, due to the energy
eposited at time t=0:

T0 = h/��Cv�, p0 = ��vs
2/Cp�h = 	h. �2�

ere � is the mass density, Cv and Cp are the specific heat
apacities at constant volume and pressure, � is the lin-
ar thermal expansivity, and vs is the sound speed. 	, the
onversion factor between absorbed optical energy den-
ity and acoustic pressure, is called the Grüneisen param-
ter and is dimensionless.

The aim in photoacoustic image reconstruction is to es-
imate the initial pressure distribution p0 accurately from
easurements of the propagating acoustic pressure
aves over a measurement surface surrounding p0. Sev-

ral exact and approximate algorithms have been pro-
osed to solve this acoustic inversion [4,20]. As the focus
f this paper is on recovering optical coefficients from pho-
oacoustic images, and not on the reconstruction of the
mages themselves, it will be assumed that p0 has already
een recovered accurately. It will also be assumed that
he Grüneisen coefficient 	 is known, so that the photoa-
oustic images can be scaled to be images of the absorbed
nergy density h=p0 /	. The relationship between a pho-
oacoustic image h and the optical absorption and reduced
cattering coefficients �a and �s�, respectively, can there-
ore be written as

h = �a���a,�s��. �3�

his is the fundamental equation regarding the relation-
hip between the photoacoustic image and the optical co-
fficients. With the dependence on spatial position and
avelength x and 
 shown explicitly, Eq. (3) is

h�x,
� = �a�x,
���x,
,�a�x,
�,�s��x,
��. �4�

. Optical Absorption and Scattering
he optical absorption of tissue arises from the optical ab-
orption of its constituent molecules (potentially includ-
ng naturally occurring chromophores, contrast agents,
nd biomolecular probes). For some wavelength ranges,
nly a few chromophores dominate the absorption. For ex-
mple, in the near-infrared the absorption is predomi-
antly due to oxy- and deoxy-haemoglobin, water, and lip-

ds [7]. If the concentrations of the K significant
hromophores are written as ck�x�, k=1, . . . ,K, then the
bsorption coefficient (over a given wavelength range)
ay be written as the sum
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�a�x,
� = �
k=1

K

ck�x��k�
�, �5�

here �k�
� are the specific absorption coefficient spectra
f the chromophores [7,21]. The main topic of this paper is
he inversion of Eqs. (4) and (5) to obtain the chromophore
oncentrations ck�x� from the multiwavelength images
�x ,
� when the spectra �k�
� are known.
The scattering in highly scattering media such as bio-

ogical tissue can be described by the scattering coefficient
s�x ,
�, or equivalently the reduced scattering coefficient

s�=�s�1−g� where g is a parameter that accounts for
ome anisotropy in the scattering [22]. The wavelength
ependence of �s� has been measured for many types of
issue and can often be approximated by

�s��x,
� � a�x�
−b, �6�

here the constant b�0 is known from experiment
23–25]. Prior knowledge of the exponent b will be used in
he multiwavelength inversion in Section 4 to overcome
he absorption-scattering nonuniqueness described in
ubsection 4.A.

. Light Transport Models
n order to study the inversion of Eq. (4), it is necessary to
hoose a form or a model to describe the light fluence dis-
ribution ��x�. Light propagation in a scattering medium
s often modeled using the random walk approach of

onte Carlo simulations [26,27], which is widely consid-
red the most accurate technique, but is computationally
nefficient as the paths of many millions of photons must
e calculated to obtain a good estimate of the fluence.
his inefficiency makes it an unsuitable candidate for it-
rative inversions in which the fluence must be calculated
umerous times.
Alternative models are usually based on Boltzmann’s

ransport equation (sometimes called the radiative trans-
er equation) in which the tissue is characterized by the
bsorption and scattering coefficients �a and �s and a
phase function” that describes the directionality of the
cattering process [22]. This integrodifferential equation
n the radiance—a description of the light as a time-
arying function of direction at every point—expresses
he conservation of energy during the scattering and ab-
orption processes. Because it is difficult to solve analyti-
ally, in practice approximations are used and in all but
he simplest cases are solved numerically [22,28,29].
ome approximations, including the diffusion approxima-
ion used in this paper, have the additional advantage
hat the equations are simple enough to manipulate di-
ectly, which can be helpful when tackling the inverse
roblem, e.g., by allowing gradients to be calculated ana-
ytically rather than numerically.

The “diffusion approximation” to the radiative transfer
quation has been used widely in biomedical optical im-
ging, particularly in diffuse optical tomography [28]. The
ime-independent case, relevant in this case, takes on the
elatively simple form of a diffusion equation
��a − � · 
 � �� = q0, �7�

here 
= �3��a+�s���
−1 is the optical diffusion coefficient,

nd q0 is an isotropic source term. To obtain the diffusion
quation from the radiative transport equation, the light
uence, �, is assumed to be almost isotropic everywhere.
quation (7) is therefore usually considered an accurate
pproximation to the radiative transport equation when

s���a [28]. However, in tissue, light is quite strongly for-
ard scattered (typically g�0.9), so for a nondiffuse

ource exterior to the domain, this model is accurate only
or distances greater than a scattering length inside the
oundary, 1/�s�, where the fluence has become diffuse. For
his reason, a collimated beam incident on the boundary
s often modeled by a point source placed one scattering
ength inside it [30]. This is the approach taken in this pa-
er, using a finite-element (FE) implementation of the dif-
usion equation [29,30].

. MULTIWAVELENGTH INVERSIONS FOR
HROMOPHORE CONCENTRATIONS:
CATTERING KNOWN
s stated previously, the main aim of this paper is to ex-
lore ways in which chromophore concentrations ck�x�
ight be recovered from photoacoustic images. This sec-

ion and Section 4 describe inversion techniques for when
he optical scattering is known and unknown, respec-
ively. These cases are fundamentally different in that the
atter is much more ill-posed due to the absorption-
cattering nonuniqueness (Subsection 4.A), although
imilar optimization tools can be employed to solve both.

When the scattering coefficient distribution is known,
ne way to estimate the chromphore distributions is first
o estimate the absorption coefficient distributions from
he images of absorbed energy one wavelength at a time,
�x ,
0�→�a�x ,
0�, h�x ,
1�→�a�x ,
1�, etc, and then use
hese recovered absorption coefficient spectra �a�x ,
l� in
linear inversion of Eq. (5) to estimate the chromophore

istributions ck�x�. An alternative approach is to mini-
ize the difference between the measured images and

hose generated using a model by adjusting the chro-
ophores, thus estimating ck�x� directly using nonlinear

ptimization, without first obtaining the single-
avelength absorption coefficients. Both methods are de-

cribed below.

. Fixed-Point Iterative Inversion for Absorption
oefficients
hen the scattering is known, there is a simple way to

stimate the absorption coefficient from a photoacoustic
mage [9,10]. Given the image ĥ�x�, the absorption coeffi-
ient can be recovered using the fixed-point iteration

�a
�n+1��x� = ĥ�x�/���n��x� + ��, �8�

here ��n�=���a
�n� ,�s�� is the fluence calculated from a

odel of light transport using the nth estimate of the ab-
orption coefficient, and � is a regularization parameter.
his approach was applied to experimental data by Yuan
nd Jiang [31]. If the specific absorption coefficient spec-
ra of the chromophores within the tissue � �
� are
k
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nown, then the absorption coefficient images can be
apped to chromophore distributions by inverting Eq. (5),
single matrix inversion.

. Other Inversions for Absorption Coefficients
anerjee et al. [32] have recently proposed a noniterative
ersion similar to the fixed-point iteration above by as-
uming the diffusion coefficient in Eq. (7) 
�1/ �3�s�� (true
hen �s���a), which allows the fluence to be obtained di-

ectly by solving �� ·
� ��= ĥ−q0. Ripoll and Ntziachristos
33] also describe an inversion scheme based on the diffu-
ion model that can recover small perturbations in the ab-
orption coefficient distribution when both the scattering
nd background absorption coefficients are known. Yin et
l. [34] suggest making additional measurments of the
uence leaving the tissue and using diffuse optical tomog-
aphy (DOT) to estimate the interior fluence distribution,
lthough this will suffer from the poor spatial resolution
chieveable with DOT. Yuan et al. [35] propose the use of
priori structural information as a means of regulariza-

ion, where “the PAT image (absorbed energy density
ap) is used both as input data and as prior structural

nformation” [35], p. 18078. The difficulty with this form
f regularization is that the PAT image may not give ac-
urate structural information as it is distorted by the non-
niform fluence. Indeed, the desire to obtain an image
hat is physiologically accurate structurally is one of the
otivations for inverting for the optical coefficients.
The difference between two images can be used to as-

ess changes before and after a contrast agent is intro-
uced, or to compare two images at different wavelengths
f one of the chromophores contributes negligible absorp-
ion at one of the wavelengths and the other has similar
bsorption at both. A “difference” or “subtraction” image
an provide useful qualitative images that highlight re-
ions where the absorption has changed [16]. However,
imple considerations show that this approach is of no
enefit to quantitative imaging. If in the first measure-
ent there is only one absorber present �a1, but in the

econd there is also a second �a2, then the absorbed en-
rgy images in the two cases will be

h1 = �a1�1, �9�

h2 = ��a1 + �a2��2, �10�

here �1 and �2 are the fluence distributions in the two
ases. The difference image is given by

h2 − h1 = �a1��2 − �1� + �a2�2, �11�

hich, if �2=�1, would be the same as a photoacoustic im-
ge taken with only the second absorber present. While
his may be a useful qualitative tool in cases where the
hange in the fluence is minimal, it does nothing to assist
n our attempt to extract chromophore concentrations, as
he fluence distribution is still unknown.

. Gradient-Based Inversion for Absorption or
cattering: Adjoint Model
n alternative approach to estimating the absorption co-
fficient images �a�x� from ĥ�x�, and one which has the
dvantage that it can be used to estimate the scattering
oefficient if �a is known, is to minimize a functional
uantifying the difference between the model output h
nd the measurements ĥ by adjusting �a�x�:

argmin
�a�x�

E�a
=

1

2 � �h��a� − ĥ�2d�. �12�

The 1
2 is included here so that the derivatives are not

luttered by factors of 2.)
One way to find the minimum is to calculate the gradi-

nts of the functional E�a
with respect to �a at each point

nd perform a directed search for the minimum. The
quivalent problem for scattering is obtained by replacing
a with �s� in Eq. (12):

argmin
�s��x�

E�s�
=

1

2 � �h��s�� − ĥ�2d�. �13�

he functional gradients for both problems can be found
fficiently by using the adjoint equation

��a − � · 
 � ��* = �a�h − ĥ�, �14�

ith adjoint solution �*. The functional gradients for the
bsorption and scattering can then be calculated via the
quations [36]

�E�a

��a�x�
= ��x��h�x� − ĥ�x�� − �*�x���x�, �15�

�E�s�

��s��x�
= 3
�x�2 � �*�x� · ���x�. �16�

In other words, by solving Eqs. (7) and (14) just once
ach, the functional gradients can be calculated from Eqs.
15) and (16)—a much more efficient way to calculate the
radients than the common method of finite differences.
Note that because both the forward and adjoint equa-
ions are in the form of diffusion equations, the same nu-
erical model can be used for both.) It has been shown

hat by using a gradient descent algorithm, such as the
royden–Fletcher–Goldfarb–Shanno (BFGS) minimiza-

ion routine, either the absorption or reduced scattering
oefficient distributions can be recovered when the other
s known in advance [36].

. Inversion for Chromophore Concentrations
xtending the minimization approach from absorption co-
fficients to chromophores is straightforward. In this case
he problem becomes

argmin
ck�x�

Ec =
1

2 �� �h�ck� − ĥ�2d�d
, �17�

here h and ĥ now represent a set of images obtained at
ultiple wavelengths and a second integral over wave-

ength is included. Using Eq. (5) the functional gradient
ith respect to the chromophores ck can be calculated us-

ng

�Ec

�ck
=� �k�
�

�E�a

��a
�
�d
. �18�
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In the following example, the absorbed energy density
t four wavelengths (650, 750, 850, and 950 nm) was cal-
ulated assuming that only two chromophores contribute
o the absorption. The reduced scattering coefficient �s�
as set constant at 2 mm−1. A point source of light was
ositioned 0.25 mm below the boundary; see Fig. 1. The
wo chromophores were chosen to have absorption spectra
imilar to deoxyhemoglobin and oxyhemoglobin; see Fig.
. Their concentrations, c1�x� and c2�x�, respectively, are
hown in Figs. 3A and 3B.

In the simulated photoacoustic images shown in Fig. 1,
t is immediately apparent that it is not possible to see the
atterns of both underlying chromophore distributions
rom these plots. However, the least-squares minimiza-
ion, Eq. (17), can recover the two separate chromophore
istributions accurately. The estimates after 500 itera-
ions are shown in Figs. 3C, 3D, and 4. The adjoint model,

A

C

ig. 1. (Color online) Images of absorbed optical energy density
our wavelengths: (A) 650, (B) 750, (C) 850, (D) 950 nm. The imag
eneath the upper surface, and the anisotropy factor is 0.9. Ea
ynamic range.
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ig. 2. Specific absorption coefficients (mm/l/g) of oxyhemoglo-
in and deoxyhemoglobin, the two chromophores whose concen-
rations are shown in Figs. 3A and 3B.
q. (14), provided the functional gradients, and the BFGS
outine as encoded in Matlab’s fminunc function was used
o perform the minimization.

. MULTIWAVELENGTH INVERSION FOR
HROMOPHORE CONCENTRATIONS:
CATTERING UNKNOWN
he assumption in Section 3 was that the optical scatter-

ng was known. In some situations it may be possible to
stimate the scattering coefficient accurately, for in-
tance, in tissues that are fairly homogeneous. In general,
hough, this will not be the case, and the photoacoustic
bsorption-scattering nonuniqueness makes the inversion
or the chromophore concentrations ill-posed. An example
f this nonuniqueness is given in Subsection 4.A. In the
emainder of this section, the notation and framework for
ackling the inversion using a well-known nonlinear opti-
ization (Newton’s method) will be given, and an ex-

mple will be used to show that prior knowledge of the
avelength dependence of the scattering, exponent b in
q. (6), is sufficient to remove the nonuniqueness.

. Absorption-Scattering Nonuniqueness
hile the gradient-based approach described in Section 3

as the two advantages that (a) the gradients can be cal-
ulated efficiently using the adjoint model, and (b) it can
ecover either the absorption or scattering coefficient dis-
ributions when the other is known, there remains a dif-
culty when trying to recover both absorption and scat-
ering coefficient distributions togther. Given a
easurement of the absorbed energy density ĥ�x� at a

ingle wavelength, it is not possible in general to recover
bsorption and scattering distributions simultaneously

B

D

o two chromophores with different absorpion spectra, shown at
nsions are 3.75 mm�8 mm, a point source is positioned 0.25 mm
ge is normalized by its maximum value to optimize the visible
due t
e dime
ch ima
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nd uniquely. The reason is that both the absorption and
he scattering can affect the fluence distribution, and so
hen the calculated absorbed energy h�x� differs from the
easured absorbed energy ĥ�x� it is not possible to say
hether this is due to an error in the absorption coeffi-

ient distribution or in the scattering coefficient distribu-
ion.

A numerical example of this nonuniqueness will help to
larify the difficulty it poses. By using a FE implementa-
ion of the diffusion model of light transport described in
ubsection 2.C, the absorption and scattering coefficient
istributions shown in Fig. 5A and 5B, �a1 and �s1, were
alculated to give rise to the absorbed energy distribution
1 shown in Fig. 5C. (The model was encoded in Matlab
n a 25�50 mesh representing a 4 mm�8 mm rectangle,

point source was placed 0.25 mm inside the upper
oundary, and the boundary condition set such that the
ncoming photon current is zero.) The scattering coeffi-
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ig. 3. (Color online) True concentration distributions (g/l) of tw
uccessfully obtained by minimizing Eq. (17) using a gradient-ba
ges from Fig. 1 as input data. The functional gradients were calc
priori. The image dimensions are 3.75 mm�8 mm.

−4 −3 −2 −1 0 1 2 3

10

20

30

40

50

x (mm)

ch
ro
m
ph

or
e
co
nc

en
tr
at
io
n
(g
/l) A

ig. 4. (Color online) Profiles through the chromophore concen
rofiles at 1.6 mm through Figs. 3A and 3C, respectively. (B) Pr
xact (dashed), estimated (dotted–dashed) through Figs. 3B and
ient was then set to the distribution shown in Fig. 5E,
s2, and a gradient-based minimization [with the Matlab
outine fminunc using the BFGS algorithm, and the gra-
ients calculated from Eq. (15)] was used to find the ab-
orption coefficient �a2 that would minimize the func-
ional Enonunique

Enonunique =
1

2 � �h2��a2,�s2� − h1��a1,�s1��2d�. �19�

ig. 5D shows �a2 when the differences between h2 and h1
ere negligible. h2 is shown in Fig. 5F and the differences
a1−�a2, �s1−�s2, and h1−h2 are shown in Figs. 5G, 5H,
nd 5J, respectively. The two pairs ��a1 ,�s1� and ��a2 ,�s2�
re an example of the absorption-scattering nonunique-
ess, in the sense that both result in the same absorbed
nergy distribution. A standard response to a nonunique-
ess in an inverse problem like this is to try and incorpo-
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ate some additional information, such as prior knowl-
dge of the type of solution, into the problem to reduce the
ize of the solution space. Unfortunately, simple con-
traints on the smoothness of the coefficient
istributions—such as may be provided by Tikhonov-style
egularization—will not be sufficient in this case. Indeed,
rom this example it is clear that both sets of optical pa-
ameters have similar degrees of smoothness, and it will
ot be possible to separate them on that basis. However,
he problem posed by the nonuniqueness can be over-
ome, in the sense that the chromphores can be recovered
y using prior knowledge of the wavelength dependence
f the scattering as described below [17,21].

. Error Functional and Sensitivity Equations
he unknown quantities from now on are the spatial dis-
ributions of the concentrations of the K chromophores
k�x� and the spatial dependence of the scattering a�x�,
ather than the absoprtion and scattering coefficient dis-
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ensities are indistinguishable (J is virtually zero everywhere) d
avelength photoacoustic image and the underlying optical coeffi

itioned 0.25 mm beneath the upper surface, and the anisotropy
ributions �a�x� and �s��x�. The problem is similar to Eq.
17), except the scattering amplitude a�x� is also un-
nown:

argmin
ck�x�,a�x�

E =
1

2 �� �h�ck,a� − ĥ�2d�d
. �20�

he sensitivity of E to changes in ck and a guide the mini-
ization by indicating the local shape of the error func-

ional. Differentiating Eq. (20) with respect to ck and a
ives

�E
�ck

=�� �h

�ck
�h�ck,a� − ĥ�d�d
, �21�

�E
�a

=�� �h

�a
�h�ck,a� − ĥ�d�d
. �22�

he derivatives �h /�ck and �h /�a are related to �h /��a
nd �h /���, respectively, by
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�h

�ck
= �k

�h

��a
, �23�

�h

�a
= 
−b

�h

��s�
, �24�

nd �h /��a and �h /��s� may be calculated from

�h�x�

��a�x��
= ��x���x − x�� + �a�x�

���x�

��a�x��
, �25�

�h�x�

��s��x��
= �a�x�

���x�

��s��x��
, �26�

hich come from differentiating Eq. (3). Equations for
� /��a and �� /��s�, the sensitivity of fluence with respect
o the optical parameters, may in turn be derived from
q. (7). The sensitivity of the fluence ��x� at point x to a

hange in the absorption coefficient �a�x�� at point x� may
e calculated from

��a − � · 
 � �
���x�

��a�x��
= − ��x���x − x��. �27�

imilarly for the diffusion coefficient 


��a − � · 
 � �
���x�

�
�x��
= � · ���x − x�� � ��x��. �28�

he reduced scattering coefficient and the diffusion coef-
cient are related by 
= �3��a+�s���

−1, so differentiating
ives the sensitivity relation �
 /��s�=−3
2. All the gradi-
nts and sensitivities required for a minimization could
e calculated from these equations. However, as the light
odel was encoded using a FE model, the gradients could

lso be obtained by differentiating the basis functions di-
ectly. This avoids the numerical difficulties posed by the
iscretization of terms such as � · ���x−x�����x��.

. Discrete Notation
mages are not continuous functions of x but discretized,
o it is helpful to have a notation to describe the discrete
ase. For the remainder of this paper, the coordinates of
he pixels (or voxels) of the photoacoustic image of h will
e denoted by xm, m=1, . . . ,M, and the optical coefficients
r chromophores will be defined at points xn, n=1, . . . ,N.
The meshes defined by these points may of course be the
ame.) Also, the subscripts k and l will be used to indicate
he different chromophores and wavelengths, respec-
ively. The following column vectors will be useful:

• the absorbed energy distribution at wavelength 
l,
h
l= �h1


1 , . . . ,hM

1�T= �h�x1 ,
l� , . . . ,h�xM ,
l��T,

• the concentration distribution of chromophore k,
ck= �ck1 , . . . ,ckN�T= �ck�x1� , . . . ,ck�xN��T,

• and the spatial variation of the scattering,
a= �a1 , . . . ,aN�T= �a�x1� , . . . ,a�xN��T.

For the multiwavelength inversions, these column vec-
ors are concatenated into long, multiwavelength column
ectors:
h = 	
h
1

]

h
L

 =	

h1

1

]

hM

1

]

h1

L

]

hM

L


, c = 	
c1

]

cK

 =	

c11

]

c1N

]

cK1

]

cKN


 .

. Gradient, Hessian, and Jacobian
ith continuous variables, the problem was to find the

istributions ck�x� and a�x� that minimized the error func-
ional in Eq. (20) given the continuous measured data ĥ.
n the discrete case, the problem is still to find the chro-
ophore concentrations and scattering that minimize an

rror functional, but they are no longer continuous func-
ions but finite-length vectors c and a. For succinctness,
hey will be combined together into a single vector of un-
nowns:

u = �c

a� . �29�

he error functional E is no longer defined as an integral
ut as a sum over image pixels and wavelengths,

E�u� =
1

2�
l=1

L

�
m=1

M

�hm

l�u� − ĥm


l�2 =
1

2
eTe, �30�

here e=h− ĥ is the vector of residuals. From now on E
ill be used to refer to this discrete version of the error

unctional.
One way to search for the minimum of E is to use the

terative inversion scheme known as Newton’s method
37]. A brief description of it is given here for complete-
ess. First note that E is a continuous function of the un-
nown parameter vector u, and so its Taylor expansion
bout u0 exists as

E�u0 + �� � E�u0� + gT� +
1

2
�TH� + ¯ , �31�

here � represents a perturbation to the unknowns u0.
he first-order derivative vector g and second-order de-
ivative matrix H are called the (functional) gradient and
essian, respectively. Differentiating the Taylor series in
q. (31) and setting it to zero gives g=−H�, which can be

earranged into an expression for an “update” vector

� = − H−1g � − �JTJ�−1Je. �32�

t each step, the latest estimate of u is updated, u←u
�, until the value of u that minimizes E, or a good ap-
roximation to it, is reached. The gradient vector g and
essian matrix H are given by
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g = 
 �E
�c11

, . . . ,
�E

�cKN
�
 �E

�a1
, . . . ,

�E
�aN

�T

, �33�

H = �
�2E

�c11
2

. . .
�2E

�c11�cKN

�2E
�c11�a1

. . .
�2E

�c11�aN

] � ] ] � ]

�2E
�cKN�c11

. . .
�2E

�cKN
2

�2E
�cKN�a1

. . .
�2E

�cKN�aN

�2E
�a1�c11

. . .
�2E

�a1�cKN

�2E

�a1
2

. . .
�2E

�a1�aN

] � ] ] � ]

�2E
�aN�c11

. . .
�2E

�aN�cKN

�2E
�aN�a1

. . .
�2E

�aN
2

� �34�
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Note that the gradient, unlike the Hessian, depends on
he measured data ĥ. Both the Hessian and gradient can
e calculated from the Jacobian matrix, as H�JTJ and
=JTe, although the gradient can be calculated more ef-
ciently using the adjoint model described in Subsection
.C. The elements of the Jacobian matrix are the sensi-
ivities of the model output h to changes in the unknowns.
or instance, the Jacobian matrices for c and a at wave-

ength 
l are

Jc

l = �

�h1

l

�c1

. . .
�h1


l

�cKN

] � ]

�hM

l

�c1

. . .
�hM


l

�cKN

� , �35�

Ja

l = �

�h1

l

�a1

. . .
�h1


l

�aN

] � ]

�hM

l

�a1

. . .
�hM


l

�aN

� . �36�

he elements of the single-wavelength Jacobians can be
alculated column by column using Eqs. (23)–(28), and
he multiwavelength Jacobian matrix can then be con-
tructed as

J = �
Jc


1 Ja

1

Jc

2 Ja


2

]

Jc

L Ja


L
� . �37�

his potentially huge multiwavelength Jacobian does not
ecessarily need to be stored in full, because the multi-
avelength Hessian and gradient could be calculated as

he sum of single-wavelength Hessians and gradients.
. Example
proof-of-principle numerical example will be used to

emonstrate that the absorption-scattering nonunique-
ess is not a problem for multiwavelength chromophore

nversions when using prior knowledge of the dependence
f the scattering on wavelength. Figures 8A and 8B below
how the spatial distributions of a single chromophore
oncentration c�x� and the spatial part of the scattering
oefficient a�x�, respectively. A small 25�50 mesh repre-
enting 3.6 mm�7.5 mm was deliberately chosen to keep
he size of the inversion reasonable. Even with this small
xample consisting of only two unknown parameter dis-
ributions, the number of unknowns is 2500, the Hessian
atrix has 25002=6.25�106 elements and the multi-
avelength Jacobian 5000�2500=12.5�106 elements.

The large scale of this type of inversion is discussed fur-
her in Section 5 below.)

The FE model of light transport described above was
sed both to simulate the “measured” data ĥ and as the

orward model in the inversion scheme. To mitigate this
inverse crime” the former was calculated on and linearly
nterpolated from a larger, noncoincident mesh, and
aussian noise was added to give a mean signal-to-noise

atio in the “measured” images of �30 dB. The wave-
ength dependence of the chromophore was chosen to be
imilar to that of oxyhemoglobin, and the scattering
avelength dependence was set to b=1.3, see Fig. 6.
The ranges of the resulting absorption and reduced

cattering coefficients are shown in Table 1 as a function
f wavelength. (A scaling factor was introduced to the
cattering, �s��x�=a�x�a0
−b mm−1, where a0=500, so that
he unknowns c�x� and a�x� were of similar magnitude.)
hese coefficients were chosen to be sufficiently small to
emonstrate clearly the principle that the scattering-
bsorption nonuniqueness could be overcome using mul-
iwavelength data. When the absorption or scattering co-
fficient is large, the fluence may be small at some points
n the image, resulting in a low signal-to-noise ratio there.
he practical question of the range of signal-to-noise ra-

ios for which this inversion is achievable in practice is
ot tackled directly in this paper.
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. Ill-Conditioning and Regularization
solution for the update � in the matrix Eq. (32) will

trictly exist only when the Hessian, or its approximation
TJ, has an inverse. However, the existence of the inverse

s not sufficient to ensure that the updates � calculated
rom it are stable, in the sense that a small perturbation
n the measured data leads to a small perturbation in the
pdate �. This will be the case only if the condition num-
er of the Hessian is not too large. The conditioning of the
essian can be obtained, for small problems such as the

xample here, by calculating the SVD H=U�VT, where
he columns of the full matrices U and V contain the “left”
nd “right” singular vectors ui and vi, and � is a diagonal
atrix containing the corresponding singular values,

1 ,�2 , . . . . The singular values in � appear in order from
he largest at the top to the smallest at the bottom, and
he condition number is the ratio of the largest to the
mallest [38]. Substituting the SVD representation of H
nto Eq. (32) gives a way to calculate the update [39]

� = − V�−1UTg = − �
i

ui
Tg

�i
vi. �38�

From this it is clear that if the smallest singular values
re very small then their reciprocals will be very large
nd will make the solution overly sensitive to noise in the
ata. Measures taken to prevent this are generically
ermed regularization. Two popular ways are the
runcated-SVD, in which the sum over i in Eq. (38) is
runcated to include only some of the singular values and
ectors in the reconstructed image, and Tikhonov, in
hich a filter �i

2 / ��i
2+�2� is used to weight the inverted

ingular values. � is a variable regularization parameter.
he value of i at which to truncate the SVD, or the regu-
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Fig. 6. Wavelength dependence of the chromophore abs

Table 1. Ranges of the Absorption and Reduced
Scattering Coefficients Used in the

Multiwavelength Inversion Example as a
Function of Wavelength


 (nm) �a �mm−1� �s� �mm−1�

650 0.01–0.02 0.5–1.1
750 0.01–0.03 0.4–0.9
850 0.02–0.06 0.4–0.8
950 0.02–0.07 0.3–0.7
arization parameter �, can be chosen automatically using
method such as the L-curve, or in order to maximize the

ubjective quality of the image, as was done here.
The Hessian was calculated for the example above us-

ng one, two, and four wavelengths. Figure 7 shows the
ingular value spectra for these Hessians. The effect of
ikhonov regularization on the spectrum is also shown.
irst, it is clear that in the single wavelenth case the con-
ition number is huge, �1023, and so the single-
avelength Hessian is very ill-conditioned–evidence of

he absorption-scattering nonuniqueness. Increasing the
umber of wavelengths in the Hessian from one to two

mproves the conditioning considerably, to perhaps 1011.
nterestingly, further increases in the number of wave-
engths do not improve the conditioning more.

Intuitively, if the number of (independent) measure-
ent samples, here L�M, is greater than the number of
nknown parameters, �K+1��N, then there is a good
hance the nonuniqueness in the inversion will be over-
ome. Here, the inversion is for two parameters, and the
ignificant reduction in the condition number of the Hes-
ian when two wavelengths are included is indicative of
his removal of the nonuniqueness.
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ion. The nonuniqueness in the single wavelength case gives rise
o a gap in the singular value spectrum of several orders of mag-
itude. The nonuniqueness, and therefore the gap in the spec-
rum, disappears when two or more wavelengths are used in the
econstruction. However, the condition number is still large due
o a second type of ill-posedness caused by the diffusive nature of
he light propagation. This can be treated using standard tech-
iques such as Tikhonov regularization, as shown.
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However, because of the diffusive nature of light trans-
ort in scattering media, and the subsequent blurring of
igh-spatial-frequency information, there remains a sec-
nd type of ill-posedness, indicated by the gradual decay
f the singular values. This type of ill-posedness is much
ess severe than the nonuniqueness and can be overcome
y applying Tikhonov (or other) regularization.
The results of the inversion for c�x� and a�x�, with an

nitial guess of 5 everywhere for both parameters, using
ata at four wavelengths, and following three Newton it-
rations with Tikhonov regularization are shown in Fig.
. Profiles are shown in Fig. 9. Although the noise has af-
ected the estimate of a more than that for c, it is clear
hat both parameters have successfully been recovered
ithout any “crosstalk” between them.
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ig. 9. (Color online) Profiles for the multiwavelength inversion
rofile through the concentration distribution, and a central ver
solid), initial guess (dashed), estimate after one Newton iteratio
pond to slices through Figs. 8C and 8D.
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ig. 8. (Color online) Results from Newton inversion using thr
entration distribution c�x� in (g/l). (B) True scattering distributi
red scattering distribution estimate. The initial distributions w
entration and the scattering. The image dimensions are 3.6 m
istributions have been recovered, without crosstalk between the
xample.
. DISCUSSION
n this paper, several approximations have been used in
rder to find a way to extract chromophore concentrations
rom photoacoustic images. First, it was assumed that a
AT image gives a measurement of the absorbed energy
ensity distribution ĥ�x�. This is true only if (a) the initial
ressure distribution p0�x� has been recovered exactly,
nd (b) the Grüneisen parameter 	�x� is known. Neither
f these conditions will be quite true in practice, although
ith the use of calibrated broadband ultrasound detec-

ors, a complete set of acoustic pressure measurements on
surface surrounding p0, and an exact image reconstruc-

ion algorithm, a good quantitative estimate of p0�x� is
ossible.
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Second, an approximate light model was used to model
he light transport in the tissue. The diffusion approxima-
ion will be accurate for depths greater than �1/�s�
�0.5−1 mm in tissue), and if a more accurate model is
equired for shallower depths, either one of the higher-
rder Pn approximations to the radiative transport equa-
ion [28] or the delta-Eddington adjustment to the diffu-
ion equation formulation [6,40,41] could be used.

Third, the simulations in this paper are in two dimen-
ions in order to keep the number of unknown parameters
ow and therefore the inversion tractable. In reality, the
ight will propagate in three dimensions. However, solu-
ions to the diffusion equation do not differ fundamentally
etween two and three dimensions, and so the inverse
roblem is expected to behave similarly in three dimen-
ions. Even for the very simple 2D example given in Sub-
ection 4.E, the multiwavelength Jacobian required al-
ost 100 MB storage. Clearly for more realistic problems,

n three dimensions and with more chromophores, the
atrices could easily become very large indeed. A 1 cm3

mage at 100 �m resolution—achievable with current
AT technology—has 1�106 voxels. If four chromophores
nd scattering are included in the inversion, the Hessian
ill have 25�1012 elements, requiring hundreds of ter-
bytes of storage. This is a large-scale inverse problem,
nd while Newton’s method was used here to demonstrate
he principle that knowledge of the wavelength-
ependence of scatter can be used to overcome the nonu-
iqueness, for a large scale problem it would not be fea-
ible to store the Hessian, let alone calculate its inverse.
This might be feasible up to a point with state-of-the-art
igh-performance computing, but such facilities are not
niversally available.) In this case alternative approaches
ust be used. One key step is the adjoint model, Eq. (14),

hat can be used to calculate the gradients efficiently,
ven for large-scale problems. If the gradients can be cal-
ulated, then conjugate-gradient or quasi-Newton meth-
ds such as BFGS could be used to tackle the inversion,
hich would obviate the need to calculate the Hessian
atrix directly.
Another practical issue of interest is the range of

ignal-to-noise ratios over which this inversion will work.
his is not investigated in this paper, but is seems likely
hat when the target tissue is illuminated from just one
irection, there will be a trade-off between the depth to
hich this inversion is accurate and the degree of attenu-
tion of the light (the magnitude of the absorption and
cattering coefficients). In some circumstances it may be
ossible to design illumination geometries to mitigate this
ifficulty.

. CONCLUSIONS
he nonlinear optical inversion of photoacoustic (PAT) im-
ges for chromophore concentrations and scattering coef-
cients was described, and a framework given for their
olution. The principle contributions of this paper are (1)
o show that different chromophores can be separated us-
ng a multiwavelength approach when the optical scatter-
ng is known (an adjoint model was provided for the effi-
ient calculation of the functional gradients in this case),
2) to show that a scattering-absorption nonuniqueness
revents inversions for the absorption coefficient from a
ingle-wavelength photoacoustic image unless the scat-
ering is known a priori, and (3) the demonstration that
he use of prior knowledge of the wavelength dependence
f the scattering is sufficient to overcome this nonunique-
ess and allow the recovery of the concentration distribu-
ions of the constituent chromphores.
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