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Biomedical photoacoustic tomography (PAT) can provide qualitative images of biomedical soft tissue with high
spatial resolution. However, whether it is possible to give accurate quantitative estimates of the spatially vary-
ing concentrations of the sources of photoacoustic contrast—endogenous or exogenous chromophores—remains
an open question. Even if the chromophores’ absorption spectra are known, the problem is nonlinear and ill-
posed. We describe a framework for obtaining such quantitative estimates. When the optical scattering distri-
bution is known, adjoint and gradient-based optimization techniques can be used to recover the concentration
distributions of the individual chromophores that contribute to the overall tissue absorption. When the scat-
tering distribution is unknown, prior knowledge of the wavelength dependence of the scattering is shown to be
sufficient to overcome the absorption-scattering nonuniqueness and allow both distributions of chromophore
concentrations and scattering to be recovered from multiwavelength photoacoustic images. © 2009 Optical

Society of America
OCIS codes: 170.5120, 100.3190.

1. INTRODUCTION

The biomedical imaging modality photoacoustic tomogra-
phy (PAT) has been developed over the past decade and
shown to be able to provide images of soft biological tissue
with high spatial resolution (<100 um resolution at
5-10 mm depth) [1-5]. For contrast, it depends on the
distribution of optical absorption in the imaged tissue,
which in turn depends on the abundance and location of
chromophores (light-absorbing molecules) within the tis-
sue. The chromophores may be endogenous, such as he-
moglobin or melanin, or exogeneous, such as dyes or
nanoparticles that are introduced as contrast agents.
Because of the close relationship between the photoa-
coustic image and the tissue optical properties, much cur-
rent research in PAT is concerned with the idea that
spectroscopic methods could be applied to sets of photoa-
coustic images obtained at multiple optical wavelengths
to extract the distributions of the chromophore concentra-
tions [6-8]. The prospect of being able to obtain accurate,
quantitative, in vivo images of the distributions of endog-
enous chromophores and tagged molecular markers to
sub-mm resolution with nonionizing radiation is very en-
ticing. However, extracting chromophore concentrations
from PAT images is not trivial, and there have so far been
few, if any, attempts to take into account the full nonlin-
earity of the problem and tackle the nonunique depen-
dence of PAT images on absorption and scattering.
Photoacoustic amplitude spectra are not, in general, di-
rectly proportional to the absorption coefficient spectra
that gives rise to them. Were this the case, accurate esti-
mates of chromophore concentration could be obtained
straightforwardly by measuring photoacoustic images at
a number of different wavelengths and using a simple,
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linear, pixel-by-pixel spectral best-fit. As is now increas-
ingly being recognized, the spatially varying and
wavelength-dependent distribution of light within the tis-
sue must be taken into account if accurate results are to
be achieved [7,9-16]. To do so, however, is complicated by
the need to estimate the nonuniform light distribution, as
it will depend on the distributions of both the optical ab-
sorption and scattering coefficients of the tissue, neither
of which is known in advance.

This paper investigates the inversion that maps multi-
wavelength photoacoustic images to chromophore distri-
butions. The general framework involves the iterative ad-
justment of the optical coefficients of a numerical model of
light transport until the calculated absorbed energy den-
sity at each wavelength matches the measured photo-
aoustic images. Two approaches to this are (1) a two-step,
wavelength-by-wavelength strategy that first recovers the
absorption coefficient distribution from the photoacoustic
image at each wavelength and then estimates the chro-
mophore concentrations spectroscopically from knowledge
of the chromophore spectra, or (2) a one-step, all-
wavelengths-at-once approach in which the chromophore
concentrations are recovered using a direct inversion
without the intermediate step to the absorption coeffi-
cients.

Section 2 introduces the light transport models rel-
evant to photoacoustic imaging, and Section 3 describes
iterative algorithms based on these light models that are
capable of separating chromophore distributions when
the optical scattering distribution is known (wavelength-
by-wavelength strategies). An adjoint model is introduced
that can be used for very efficient calculation of the func-
tional gradients [9,10]. Section 4 tackles the more general

© 2009 Optical Society of America



444 J. Opt. Soc. Am. A/Vol. 26, No. 2/February 2009

case, when the scattering coefficient distribution is un-
known and potentially nonuniform, using an all-
wavelengths-at-once approach. In this case, the inversion
is ill-posed both because of the diffusive nature of light
transport and, more severely, because of the “photoacous-
tic absorption-scattering nonuniqueness,” an example of
which is given in Subsection 4.A. Section 4 describes and
demonstrates that this nonuniqueness can be overcome
using prior information about the wavelength dependence
of the scattering within [17]. The singular-value decompo-
sition (SVD) of the Hessian matrix is used to demonstrate
that the nonuniqueness has been removed, and a numeri-
cal example is given in which a chromophore distribution
is recovered simultaneously with the unknown scattering
distibution using Newton’s method.

2. LIGHT PROPAGATION IN SCATTERING
MEDIA

In a wavelength-by-wavelength inversion strategy, the
first step is to extract optical absorption coefficients from
photoacoustic images, and the second is to use knowledge
of the chromophore absorption spectra in a spectroscopic
inversion for chromophore concentrations. To see how it
might be possible to extract optical absorption (and scat-
tering) coefficients from a photoacoustic image, it is first
necessary to understand how a photoacoustic image de-
pends on them. This section therefore briefly describes
the optical part of the photoacoustic forward problem:
light propagation and absorption. (The second part of the
forward problem, the propagation and detection of the
acoustic waves, is not covered here, but details can be
found in the literature [4,18].)

A. Absorbed Energy Density: Photoacoustic Image

In PAT, a short pulse of light, typically of nanoseconds du-
ration, illuminates a region of soft tissue. The light is
scattered and absorbed within the tissue, and can be de-
scribed by a fluence rate ®(x,¢) in W/cm?, where x € Q) is
a point in the tissue and ¢ is the time. For the examples
given in this paper QCR2, but similar behavior is ex-
pected in R?; see Section 5. The photons that are not scat-
tered back out of the tissue are eventually absorbed by it,
and when the dominant de-excitation pathway of the ex-
cited chromophores is via vibrational relaxation, the opti-
cal energy is converted to heat. The absorbed power den-
sity, the rate at which the light energy is absorbed and
therefore the rate at which the tissue is locally heated, is
1, ® in W/em?, where u,(x) is the optical absorption coef-
ficient of the tissue.

The absorbed optical energy, or equivalently the depos-
ited heat energy, causes a temperature and pressure rise
within the tissue local to where the absorption took place.
As soft tissue is an elastic medium, this local pressure
rise propagates as an acoustic (ultrasonic) wave. Because
the optical propagation, absorption, and conversion to
heat typically occur on a timescale much shorter than the
mechanical relaxation—i.e., the local tissue mass density
does not change significantly until all the optical energy
has been converted to heat—it is often assumed therefore
that, from the acoustic point of view, the heating occurs
instantaneously. Under this assumption, the acoustic
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propagation can be modeled as an initial value problem,
and the temporal variation of the fluence rate ® is not di-
rectly relevant; the key quantity is its integral over time,
the fluence, ¢(x)=[P(x,¢)d¢ in J/cm?. The total amount of
optical energy deposited over the duration of the pulse,
the absorbed energy density,  in J/cm?, is then given by

H(x,8) = po(x) plx) 8(2) = h(x) 8(t), 1)

where the spatial part of H is written as A(x) = u,(x) p(x).
Thermodynamic considerations [19] lead to the following
expressions for the spatially varying temperature and
pressure rises Ty and p,, respectively, due to the energy
deposited at time ¢=0:

To=h/(pC,), po=(Bvj/C,)h=Th. 2)

Here p is the mass density, C, and C,, are the specific heat
capacities at constant volume and pressure, 8 is the lin-
ear thermal expansivity, and v, is the sound speed. I', the
conversion factor between absorbed optical energy den-
sity and acoustic pressure, is called the Griineisen param-
eter and is dimensionless.

The aim in photoacoustic image reconstruction is to es-
timate the initial pressure distribution p( accurately from
measurements of the propagating acoustic pressure
waves over a measurement surface surrounding p,. Sev-
eral exact and approximate algorithms have been pro-
posed to solve this acoustic inversion [4,20]. As the focus
of this paper is on recovering optical coefficients from pho-
toacoustic images, and not on the reconstruction of the
images themselves, it will be assumed that p, has already
been recovered accurately. It will also be assumed that
the Griineisen coefficient I' is known, so that the photoa-
coustic images can be scaled to be images of the absorbed
energy density h=py/I". The relationship between a pho-
toacoustic image h and the optical absorption and reduced
scattering coefficients u, and u., respectively, can there-
fore be written as

h= prg g, ) - 3)

This is the fundamental equation regarding the relation-
ship between the photoacoustic image and the optical co-
efficients. With the dependence on spatial position and
wavelength x and \ shown explicitly, Eq. (3) is

h(x,N) = g (o6, N) b, N, g (2, M), g (o6, N)]. (4)

B. Optical Absorption and Scattering

The optical absorption of tissue arises from the optical ab-
sorption of its constituent molecules (potentially includ-
ing naturally occurring chromophores, contrast agents,
and biomolecular probes). For some wavelength ranges,
only a few chromophores dominate the absorption. For ex-
ample, in the near-infrared the absorption is predomi-
nantly due to oxy- and deoxy-haemoglobin, water, and lip-
ids [7]. If the concentrations of the K significant
chromophores are written as c;(x), k=1,...,K, then the
absorption coefficient (over a given wavelength range)
may be written as the sum



Cox et al.

K
Ko@) = X cpx)ap(N), (5)
k=1

where a;(\) are the specific absorption coefficient spectra
of the chromophores [7,21]. The main topic of this paper is
the inversion of Egs. (4) and (5) to obtain the chromophore
concentrations ci(x) from the multiwavelength images
h(x,\) when the spectra a;(\) are known.

The scattering in highly scattering media such as bio-
logical tissue can be described by the scattering coefficient
s(x,N), or equivalently the reduced scattering coefficient
te=ps(1-g) where g is a parameter that accounts for
some anisotropy in the scattering [22]. The wavelength
dependence of u, has been measured for many types of
tissue and can often be approximated by

po,\) = a(x)\?, (6)

where the constant 6>0 is known from experiment
[23—25]. Prior knowledge of the exponent & will be used in
the multiwavelength inversion in Section 4 to overcome
the absorption-scattering nonuniqueness described in
Subsection 4.A.

C. Light Transport Models

In order to study the inversion of Eq. (4), it is necessary to
choose a form or a model to describe the light fluence dis-
tribution ¢(x). Light propagation in a scattering medium
is often modeled using the random walk approach of
Monte Carlo simulations [26,27], which is widely consid-
ered the most accurate technique, but is computationally
inefficient as the paths of many millions of photons must
be calculated to obtain a good estimate of the fluence.
This inefficiency makes it an unsuitable candidate for it-
erative inversions in which the fluence must be calculated
numerous times.

Alternative models are usually based on Boltzmann’s
transport equation (sometimes called the radiative trans-
fer equation) in which the tissue is characterized by the
absorption and scattering coefficients u, and w, and a
“phase function” that describes the directionality of the
scattering process [22]. This integrodifferential equation
in the radiance—a description of the light as a time-
varying function of direction at every point—expresses
the conservation of energy during the scattering and ab-
sorption processes. Because it is difficult to solve analyti-
cally, in practice approximations are used and in all but
the simplest cases are solved numerically [22,28,29].
Some approximations, including the diffusion approxima-
tion used in this paper, have the additional advantage
that the equations are simple enough to manipulate di-
rectly, which can be helpful when tackling the inverse
problem, e.g., by allowing gradients to be calculated ana-
lytically rather than numerically.

The “diffusion approximation” to the radiative transfer
equation has been used widely in biomedical optical im-
aging, particularly in diffuse optical tomography [28]. The
time-independent case, relevant in this case, takes on the
relatively simple form of a diffusion equation
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(e =V - V)d=qo, (7)

where x=[3(u,+u.)]™! is the optical diffusion coefficient,
and q is an isotropic source term. To obtain the diffusion
equation from the radiative transport equation, the light
fluence, ¢, is assumed to be almost isotropic everywhere.
Equation (7) is therefore usually considered an accurate
approximation to the radiative transport equation when
e >, [28]. However, in tissue, light is quite strongly for-
ward scattered (typically g=0.9), so for a nondiffuse
source exterior to the domain, this model is accurate only
for distances greater than a scattering length inside the
boundary, 1/, where the fluence has become diffuse. For
this reason, a collimated beam incident on the boundary
is often modeled by a point source placed one scattering
length inside it [30]. This is the approach taken in this pa-
per, using a finite-element (FE) implementation of the dif-
fusion equation [29,30].

3. MULTIWAVELENGTH INVERSIONS FOR
CHROMOPHORE CONCENTRATIONS:
SCATTERING KNOWN

As stated previously, the main aim of this paper is to ex-
plore ways in which chromophore concentrations cy(x)
might be recovered from photoacoustic images. This sec-
tion and Section 4 describe inversion techniques for when
the optical scattering is known and unknown, respec-
tively. These cases are fundamentally different in that the
latter is much more ill-posed due to the absorption-
scattering nonuniqueness (Subsection 4.A), although
similar optimization tools can be employed to solve both.

When the scattering coefficient distribution is known,
one way to estimate the chromphore distributions is first
to estimate the absorption coefficient distributions from
the images of absorbed energy one wavelength at a time,
h(x,Ng) — pg(x,Ng), h(x,N1)— pg(x,N\1), ete, and then use
these recovered absorption coefficient spectra u,(x,\;) in
a linear inversion of Eq. (5) to estimate the chromophore
distributions c(x). An alternative approach is to mini-
mize the difference between the measured images and
those generated using a model by adjusting the chro-
mophores, thus estimating cj(x) directly using nonlinear
optimization, without first obtaining the single-
wavelength absorption coefficients. Both methods are de-
scribed below.

A. Fixed-Point Iterative Inversion for Absorption
Coefficients

When the scattering is known, there is a simple way to
estimate the absorption coefficient from a photoacoustic

image [9,10]. Given the image fz(x), the absorption coeffi-
cient can be recovered using the fixed-point iteration

W D(x) = h(x)/($(x) + €), (8)

where ¢™=g[u™, u!] is the fluence calculated from a
model of light transport using the nth estimate of the ab-
sorption coefficient, and € is a regularization parameter.
This approach was applied to experimental data by Yuan
and Jiang [31]. If the specific absorption coefficient spec-

tra of the chromophores within the tissue «,(\) are
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known, then the absorption coefficient images can be
mapped to chromophore distributions by inverting Eq. (5),
a single matrix inversion.

B. Other Inversions for Absorption Coefficients

Banerjee et al. [32] have recently proposed a noniterative
version similar to the fixed-point iteration above by as-
suming the diffusion coefficient in Eq. (7) k=1/(3u,) (true
when u,> pu,), which allows the fluence to be obtained di-

rectly by solving (V- KV)({):fL —qo- Ripoll and Ntziachristos
[33] also describe an inversion scheme based on the diffu-
sion model that can recover small perturbations in the ab-
sorption coefficient distribution when both the scattering
and background absorption coefficients are known. Yin et
al. [34] suggest making additional measurments of the
fluence leaving the tissue and using diffuse optical tomog-
raphy (DOT) to estimate the interior fluence distribution,
although this will suffer from the poor spatial resolution
achieveable with DOT. Yuan et al. [35] propose the use of
a priori structural information as a means of regulariza-
tion, where “the PAT image (absorbed energy density
map) is used both as input data and as prior structural
information” [35], p. 18078. The difficulty with this form
of regularization is that the PAT image may not give ac-
curate structural information as it is distorted by the non-
uniform fluence. Indeed, the desire to obtain an image
that is physiologically accurate structurally is one of the
motivations for inverting for the optical coefficients.

The difference between two images can be used to as-
sess changes before and after a contrast agent is intro-
duced, or to compare two images at different wavelengths
if one of the chromophores contributes negligible absorp-
tion at one of the wavelengths and the other has similar
absorption at both. A “difference” or “subtraction” image
can provide useful qualitative images that highlight re-
gions where the absorption has changed [16]. However,
simple considerations show that this approach is of no
benefit to quantitative imaging. If in the first measure-
ment there is only one absorber present u,;, but in the
second there is also a second u,9, then the absorbed en-
ergy images in the two cases will be

hy= pa1¢1, 9)

hg = (g1 + Ma2) P2, (10)

where ¢; and ¢, are the fluence distributions in the two
cases. The difference image is given by

hy = hy = pq1(hg = d1) + paa b, (11)

which, if ¢o= 1, would be the same as a photoacoustic im-
age taken with only the second absorber present. While
this may be a useful qualitative tool in cases where the
change in the fluence is minimal, it does nothing to assist
in our attempt to extract chromophore concentrations, as
the fluence distribution is still unknown.

C. Gradient-Based Inversion for Absorption or
Scattering: Adjoint Model

An alternative approach to estimating the absorption co-
efficient images u,(x) from A(x), and one which has the
advantage that it can be used to estimate the scattering

Cox et al.

coefficient if u, is known, is to minimize a functional
quantifying the difference between the model output A

and the measurements A by adjusting u,(x):

1 .
argmin £, = 3 f [h(uy) — h]2AQ. (12)

Hq (%)

(The % is included here so that the derivatives are not
cluttered by factors of 2.)

One way to find the minimum is to calculate the gradi-
ents of the functional £, with respect to u, at each point
and perform a directed search for the minimum. The
equivalent problem for scattering is obtained by replacing
e With u! in Eq. (12):

1 .
argmin £, = — f [A(u)) - hT?dQ. (13)
g () 2
The functional gradients for both problems can be found
efficiently by using the adjoint equation

(o =V &k V)" = po(h = h), (14)

with adjoint solution ¢*. The functional gradients for the
absorption and scattering can then be calculated via the
equations [36]

o€
= p[Ax) - hx)] - ¢*(x) $la), (15)
It (%)
9,1
— = 3k(x)2V ¢ (x) - V(). (16)
g (x)

In other words, by solving Eqgs. (7) and (14) just once
each, the functional gradients can be calculated from Eqgs.
(15) and (16)—a much more efficient way to calculate the
gradients than the common method of finite differences.
(Note that because both the forward and adjoint equa-
tions are in the form of diffusion equations, the same nu-
merical model can be used for both.) It has been shown
that by using a gradient descent algorithm, such as the
Broyden—Fletcher—Goldfarb—Shanno (BFGS) minimiza-
tion routine, either the absorption or reduced scattering
coefficient distributions can be recovered when the other
is known in advance [36].

D. Inversion for Chromophore Concentrations
Extending the minimization approach from absorption co-
efficients to chromophores is straightforward. In this case
the problem becomes

1 R
argmin &, = 3 J J [h(cy) — h]2dQdN, (17)
cp(x)

where A and A now represent a set of images obtained at
multiple wavelengths and a second integral over wave-
length is included. Using Eq. (5) the functional gradient
with respect to the chromophores ¢;, can be calculated us-
ing

PE, &,
ﬂc_k =f a,(N) o (N)dA. (18)
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Fig. 1. (Color online) Images of absorbed optical energy density due to two chromophores with different absorpion spectra, shown at
four wavelengths: (A) 650, (B) 750, (C) 850, (D) 950 nm. The image dimensions are 3.75 mm X 8 mm, a point source is positioned 0.25 mm
beneath the upper surface, and the anisotropy factor is 0.9. Each image is normalized by its maximum value to optimize the visible

dynamic range.

In the following example, the absorbed energy density
at four wavelengths (650, 750, 850, and 950 nm) was cal-
culated assuming that only two chromophores contribute
to the absorption. The reduced scattering coefficient u,
was set constant at 2 mm~!. A point source of light was
positioned 0.25 mm below the boundary; see Fig. 1. The
two chromophores were chosen to have absorption spectra
similar to deoxyhemoglobin and oxyhemoglobin; see Fig.
2. Their concentrations, c¢i(x) and cy(x), respectively, are
shown in Figs. 3A and 3B.

In the simulated photoacoustic images shown in Fig. 1,
it is immediately apparent that it is not possible to see the
patterns of both underlying chromophore distributions
from these plots. However, the least-squares minimiza-
tion, Eq. (17), can recover the two separate chromophore
distributions accurately. The estimates after 500 itera-
tions are shown in Figs. 3C, 3D, and 4. The adjoint model,

0.014
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0.006
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specific absorption
coefficient (mm / 1/ g)

0.002} ‘ -

Nol L -7

0
650 750 850 950

wavelength (nm)

Fig. 2. Specific absorption coefficients (mm/l/g) of oxyhemoglo-
bin and deoxyhemoglobin, the two chromophores whose concen-
trations are shown in Figs. 3A and 3B.

Eq. (14), provided the functional gradients, and the BFGS
routine as encoded in Matlab’s fminunc function was used
to perform the minimization.

4. MULTIWAVELENGTH INVERSION FOR
CHROMOPHORE CONCENTRATIONS:
SCATTERING UNKNOWN

The assumption in Section 3 was that the optical scatter-
ing was known. In some situations it may be possible to
estimate the scattering coefficient accurately, for in-
stance, in tissues that are fairly homogeneous. In general,
though, this will not be the case, and the photoacoustic
absorption-scattering nonuniqueness makes the inversion
for the chromophore concentrations ill-posed. An example
of this nonuniqueness is given in Subsection 4.A. In the
remainder of this section, the notation and framework for
tackling the inversion using a well-known nonlinear opti-
mization (Newton’s method) will be given, and an ex-
ample will be used to show that prior knowledge of the
wavelength dependence of the scattering, exponent b in
Eq. (6), is sufficient to remove the nonuniqueness.

A. Absorption-Scattering Nonuniqueness

While the gradient-based approach described in Section 3
has the two advantages that (a) the gradients can be cal-
culated efficiently using the adjoint model, and (b) it can
recover either the absorption or scattering coefficient dis-
tributions when the other is known, there remains a dif-
ficulty when trying to recover both absorption and scat-
tering coefficient distributions togther. Given a
measurement of the absorbed energy density ﬁ(x) at a
single wavelength, it is not possible in general to recover
absorption and scattering distributions simultaneously
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°.]° N

0
Fig. 3. (Color online) True concentration distributions (g/l) of two chromophores (images A and B) and their estimates (images C and D)
successfully obtained by minimizing Eq. (17) using a gradient-based algorithm (BFGS) with the multiwavelength absorbed energy im-
ages from Fig. 1 as input data. The functional gradients were calculated efficiently using an adjoint model, and the scattering was known
a priori. The image dimensions are 3.75 mm X 8 mm.
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Fig. 4. (Color online) Profiles through the chromophore concentrations (g/l) shown in Fig. 3. (A) Exact (solid) and estimated (dotted)

profiles at 1.6 mm through Figs. 3A and 3C, respectively. (B) Profiles at 1.6 mm, exact (solid) and estimated (dotted), and at 2.3 mm,
exact (dashed), estimated (dotted—dashed) through Figs. 3B and 3D, respectively.

and uniquely. The reason is that both the absorption and cient was then set to the distribution shown in Fig. 5E,
the scattering can affect the fluence distribution, and so Mo, and a gradient-based minimization [with the Matlab
when the calculated absorbed energy h(x) differs from the routine fminunc using the BFGS algorithm, and the gra-
measured absorbed energy h(x) it is not possible to say dients calculated from Eq. (15)] was used to find the ab-
whether this is due to an error in the absorption coeffi- sorption coefficient u,o that would minimize the func-
cient distribution or in the scattering coefficient distribu- tional &onunique

tion.

A numerical example of this nonuniqueness will help to
clarify the difficulty it poses. By using a FE implementa-

1
Enonunique = 5 f [hz(/-LaQ’/vLs2) - hl(/vLal’/-le)FdQ- (19)
tion of the diffusion model of light transport described in

Subsection 2.C, the absorption and scattering coefficient Fig. 5D shows u,o when the differences between hy and i
distributions shown in Fig. 5A and 5B, u,; and u,q, were were negligible. &4 is shown in Fig. 5F and the differences
calculated to give rise to the absorbed energy distribution Mal— Ma2> Ms1— Ms2, and h1—hg are shown in Figs. 5G, 5H,
hy shown in Fig. 5C. (The model was encoded in Matlab and 5J, respectively. The two pairs (ug1, 4s1) and (ugg, o)
on a 25X 50 mesh representing a 4 mm X 8 mm rectangle, are an example of the absorption-scattering nonunique-
a point source was placed 0.25 mm inside the upper ness, in the sense that both result in the same absorbed
boundary, and the boundary condition set such that the energy distribution. A standard response to a nonunique-

incoming photon current is zero.) The scattering coeffi- ness in an inverse problem like this is to try and incorpo-
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Fig. 5. (Color online) Optical absorption-scattering nonuniqueness. The absorption and scattering coefficient distributions A and B give
rise to the absorbed energy distribution (to which the photoacoustic image is proportional) shown in C. The absorption and scattering
distributions D and E also give rise to the same absorbed energy distribution, which is shown in F. The differences between the absorp-
tion, scattering, and absorbed energy images are shown on the right in G, H, and J, respectively. The fact that these absorbed energy
densities are indistinguishable (J is virtually zero everywhere) demonstrates the nonuniqueness of the relationship between a single-
wavelength photoacoustic image and the underlying optical coefficients. The image dimensions are 4 mm X 8 mm, a point source is po-
sitioned 0.25 mm beneath the upper surface, and the anisotropy factor is 0.9.

rate some additional information, such as prior knowl-
edge of the type of solution, into the problem to reduce the
size of the solution space. Unfortunately, simple con-
straints on the smoothness of the coefficient
distributions—such as may be provided by Tikhonov-style
regularization—will not be sufficient in this case. Indeed,
from this example it is clear that both sets of optical pa-
rameters have similar degrees of smoothness, and it will
not be possible to separate them on that basis. However,
the problem posed by the nonuniqueness can be over-
come, in the sense that the chromphores can be recovered
by using prior knowledge of the wavelength dependence
of the scattering as described below [17,21].

B. Error Functional and Sensitivity Equations

The unknown quantities from now on are the spatial dis-
tributions of the concentrations of the K chromophores
c;(x) and the spatial dependence of the scattering a(x),
rather than the absoprtion and scattering coefficient dis-

tributions u,(x) and u,(x). The problem is similar to Eq.
(17), except the scattering amplitude a(x) is also un-
known:

1 .
argmin £ = — f f [h(cy,a) — h]?dQdN. (20)
cp(x),a(x) 2

The sensitivity of £ to changes in ¢;, and a guide the mini-
mization by indicating the local shape of the error func-
tional. Differentiating Eq. (20) with respect to ¢, and a
gives

o€ oh .

Jk = j J Ik[h((}k,a) - h]dﬂd)\, (21)
o€ oh .

— = J f —I[h(cy,a) — R]AQdA. (22)
Ja da

The derivatives oh/dc;, and oh/da are related to oh/du,
and oh/du,, respectively, by
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oh oh
— =, 23
sy " opg 2y
oh oh
— =\, (24)
da T
and oh/du, and oh/du, may be calculated from
M) ot ) ¢l (35)
— = ¢(x) 8x —x") + o (x) ——, 25
I (x") Ig(x")
oh(x) dp(x)
= M), (26)
Apg(x") Iprg(xc”)

which come from differentiating Eq. (3). Equations for
¢l du, and d¢/ du,, the sensitivity of fluence with respect
to the optical parameters, may in turn be derived from
Eq. (7). The sensitivity of the fluence ¢(x) at point x to a
change in the absorption coefficient u,(x’) at point x’ may
be calculated from

dp(x)
g

(e =V -k V) =-¢(x)dx —x'). (27)
Similarly for the diffusion coefficient «

(e =V - kV)

I(x)
K

—=V-[dx-x")V $x)]. (28)
Ix(x’)

The reduced scattering coefficient and the diffusion coef-
ficient are related by x=[3(u,+u.)]™1, so differentiating
gives the sensitivity relation dx/du,=-3 «2. All the gradi-
ents and sensitivities required for a minimization could
be calculated from these equations. However, as the light
model was encoded using a FE model, the gradients could
also be obtained by differentiating the basis functions di-
rectly. This avoids the numerical difficulties posed by the
discretization of terms such as V-[8x-x")V ¢(x)].

C. Discrete Notation

Images are not continuous functions of x but discretized,
so it is helpful to have a notation to describe the discrete
case. For the remainder of this paper, the coordinates of
the pixels (or voxels) of the photoacoustic image of & will
be denoted by «x,,, m=1,...,M, and the optical coefficients
or chromophores will be defined at points x,, n=1,...,N.
(The meshes defined by these points may of course be the
same.) Also, the subscripts £ and / will be used to indicate
the different chromophores and wavelengths, respec-
tively. The following column vectors will be useful:

e the absorbed energy distribution at wavelength \,,
b=, . DT =[x, Ny, - R, )T,

e the concentration distribution of chromophore £,
cp=(Cp1, - ep) T =lep(xy), ... eplan)]T,

e and the spatial variation of the scattering,
a=(aq,...,an) =lalxy),...,aly)]".

For the multiwavelength inversions, these column vec-
tors are concatenated into long, multiwavelength column
vectors:
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A
h 1

1 11
A
A 1

h™ by (1 CIN

h = = 5 C= =

N X

h'z hi* ck Ck1

h;‘uL CKN

D. Gradient, Hessian, and Jacobian
With continuous variables, the problem was to find the
distributions c¢,(x) and a(x) that minimized the error func-

tional in Eq. (20) given the continuous measured data h.
In the discrete case, the problem is still to find the chro-
mophore concentrations and scattering that minimize an
error functional, but they are no longer continuous func-
tions but finite-length vectors ¢ and a. For succinctness,
they will be combined together into a single vector of un-

knowns:
(c)
u= . (29)
a

The error functional £ is no longer defined as an integral
but as a sum over image pixels and wavelengths,

L M

1 . 1
Ew) == > [Au)-h)]? = 5eTe, (30)

I=1 m=1

where e=h-h is the vector of residuals. From now on &
will be used to refer to this discrete version of the error
functional.

One way to search for the minimum of £ is to use the
iterative inversion scheme known as Newton’s method
[37]. A Dbrief description of it is given here for complete-
ness. First note that £ is a continuous function of the un-
known parameter vector u, and so its Taylor expansion
about u, exists as

1
Eug+ &) = E(ug) + gTo+ EaTHm TR (31)

where 6 represents a perturbation to the unknowns wu,,.
The first-order derivative vector g and second-order de-
rivative matrix H are called the (functional) gradient and
Hessian, respectively. Differentiating the Taylor series in
Eq. (31) and setting it to zero gives g=—H , which can be
rearranged into an expression for an “update” vector

6=-H'g~-(JWJ) Je. (32)

At each step, the latest estimate of u is updated, u+u
+ 6, until the value of u that minimizes &, or a good ap-
proximation to it, is reached. The gradient vector g and
Hessian matrix H are given by
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>E >PE >PE >PE
dcsy de11degy deqy0ay deyiday
>PE PE >E >E
= degndct ey degnoay degnday 34)
¢ >E >E PE
daqdeyy da1dckN da’? daday
>PE >E >E >E
¢9aNéc 11 0aNﬁcKN é’aNéa 1 0(112\[
[
Note that the gradient, unlike the Hessian, depends on E. Example

the measured data 4. Both the Hessian and gradient can
be calculated from the Jacobian matrix, as H=~J7J and
g=J7e, although the gradient can be calculated more ef-
ficiently using the adjoint model described in Subsection
3.C. The elements of the Jacobian matrix are the sensi-
tivities of the model output % to changes in the unknowns.
For instance, the Jacobian matrices for ¢ and a at wave-

length \; are

JN=

N
oh

\
oh

(7(11

ah)!
degn
o, (35)
A
h}!

29794

h!
day
: (36)
ah)l

8(1]\/

The elements of the single-wavelength Jacobians can be
calculated column by column using Egs. (23)-(28), and
the multiwavelength Jacobian matrix can then be con-

structed as

J=

JM g

c

Ao | The
JC Jﬂ

a

(37)

J| g

c

a

This potentially huge multiwavelength Jacobian does not
necessarily need to be stored in full, because the multi-
wavelength Hessian and gradient could be calculated as
the sum of single-wavelength Hessians and gradients.

A proof-of-principle numerical example will be used to
demonstrate that the absorption-scattering nonunique-
ness is not a problem for multiwavelength chromophore
inversions when using prior knowledge of the dependence
of the scattering on wavelength. Figures 8A and 8B below
show the spatial distributions of a single chromophore
concentration c(x) and the spatial part of the scattering
coefficient a(x), respectively. A small 25X 50 mesh repre-
senting 3.6 mm X 7.5 mm was deliberately chosen to keep
the size of the inversion reasonable. Even with this small
example consisting of only two unknown parameter dis-
tributions, the number of unknowns is 2500, the Hessian
matrix has 25002=6.25X10% elements and the multi-
wavelength Jacobian 5000 X 2500=12.5x 108 elements.
(The large scale of this type of inversion is discussed fur-
ther in Section 5 below.)

The FE model of light transport described above was

used both to simulate the “measured” data A and as the
forward model in the inversion scheme. To mitigate this
“inverse crime” the former was calculated on and linearly
interpolated from a larger, noncoincident mesh, and
Gaussian noise was added to give a mean signal-to-noise
ratio in the “measured” images of =30 dB. The wave-
length dependence of the chromophore was chosen to be
similar to that of oxyhemoglobin, and the scattering
wavelength dependence was set to b=1.3, see Fig. 6.

The ranges of the resulting absorption and reduced
scattering coefficients are shown in Table 1 as a function
of wavelength. (A scaling factor was introduced to the
scattering, ,ué(x):a(x)ao)\‘b mm-~!, where a(=500, so that
the unknowns c¢(x) and a(x) were of similar magnitude.)
These coefficients were chosen to be sufficiently small to
demonstrate clearly the principle that the scattering-
absorption nonuniqueness could be overcome using mul-
tiwavelength data. When the absorption or scattering co-
efficient is large, the fluence may be small at some points
in the image, resulting in a low signal-to-noise ratio there.
The practical question of the range of signal-to-noise ra-
tios for which this inversion is achievable in practice is
not tackled directly in this paper.
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Fig. 6. Wavelength dependence of the chromophore absorption and scattering used in the example in Subsection 4.E.

F. Ill-Conditioning and Regularization

A solution for the update é in the matrix Eq. (32) will
strictly exist only when the Hessian, or its approximation
JTJ, has an inverse. However, the existence of the inverse
is not sufficient to ensure that the updates é calculated
from it are stable, in the sense that a small perturbation
in the measured data leads to a small perturbation in the
update &. This will be the case only if the condition num-
ber of the Hessian is not too large. The conditioning of the
Hessian can be obtained, for small problems such as the
example here, by calculating the SVD H=U3SV7, where
the columns of the full matrices U and V contain the “left”
and “right” singular vectors u; and v;, and 2, is a diagonal
matrix containing the corresponding singular values,
01,09,... . The singular values in 3 appear in order from
the largest at the top to the smallest at the bottom, and
the condition number is the ratio of the largest to the
smallest [38]. Substituting the SVD representation of H
into Eq. (32) gives a way to calculate the update [39]

uig
6=-V3UTg=- —u,. (38)
i T

From this it is clear that if the smallest singular values
are very small then their reciprocals will be very large
and will make the solution overly sensitive to noise in the
data. Measures taken to prevent this are generically
termed regularization. Two popular ways are the
truncated-SVD, in which the sum over i in Eq. (38) is
truncated to include only some of the singular values and
vectors in the reconstructed image, and Tikhonov, in
which a filter o2/(o?+€?) is used to weight the inverted
singular values. € is a variable regularization parameter.
The value of i at which to truncate the SVD, or the regu-

Table 1. Ranges of the Absorption and Reduced
Scattering Coefficients Used in the
Multiwavelength Inversion Example as a
Function of Wavelength

\ (am) fta (mm) !, (mm)
650 0.01-0.02 0.5-1.1
750 0.01-0.03 0.4-0.9
850 0.02-0.06 0.4-0.8
950 0.02-0.07 0.3-0.7

larization parameter ¢, can be chosen automatically using
a method such as the L-curve, or in order to maximize the
subjective quality of the image, as was done here.

The Hessian was calculated for the example above us-
ing one, two, and four wavelengths. Figure 7 shows the
singular value spectra for these Hessians. The effect of
Tikhonov regularization on the spectrum is also shown.
First, it is clear that in the single wavelenth case the con-
dition number is huge, =~10?%, and so the single-
wavelength Hessian is very ill-conditioned—evidence of
the absorption-scattering nonuniqueness. Increasing the
number of wavelengths in the Hessian from one to two
improves the conditioning considerably, to perhaps 101,
Interestingly, further increases in the number of wave-
lengths do not improve the conditioning more.

Intuitively, if the number of (independent) measure-
ment samples, here L X M, is greater than the number of
unknown parameters, (K+1) XN, then there is a good
chance the nonuniqueness in the inversion will be over-
come. Here, the inversion is for two parameters, and the
significant reduction in the condition number of the Hes-
sian when two wavelengths are included is indicative of
this removal of the nonuniqueness.

singular values o;

1500 2000 2500
index, 7

Fig. 7. Singular value spectrum of the Hessian matrix when
data at one, two, and four wavelengths are used in its construc-
tion. The nonuniqueness in the single wavelength case gives rise
to a gap in the singular value spectrum of several orders of mag-
nitude. The nonuniqueness, and therefore the gap in the spec-
trum, disappears when two or more wavelengths are used in the
reconstruction. However, the condition number is still large due
to a second type of ill-posedness caused by the diffusive nature of
the light propagation. This can be treated using standard tech-
niques such as Tikhonov regularization, as shown.

0 500 1000
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Fig. 8.

(Color online) Results from Newton inversion using three iterations with Tikhonov regularization. (A) True chromophore con-

centration distribution c(x) in (g/1). (B) True scattering distribution a(x). (C) Recovered chromophore concentration estimate. (D) Recov-
ered scattering distribution estimate. The initial distributions were chosen to be uniform and equal to 5 for both the chromophore con-
centration and the scattering. The image dimensions are 3.6 mm X 7.5 mm. Profiles through these images are shown in Fig. 9. Both
distributions have been recovered, without crosstalk between them, although the scattering is clearly more sensitive to the noise in this

example.

—_
(9]

— —_
O —_ w

~N

(]

chromophore concentration (g/1)

scattering parameter a(x)

Fig. 9.

0 05 1 1.5 2 25 3 35

(Color online) Profiles for the multiwavelength inversion example described in Subsection 4.E and Fig. 8. A central horizontal

profile through the concentration distribution, and a central vertical profile through the scattering distribution show the true values
(solid), initial guess (dashed), estimate after one Newton iteration (dotted—dashed) and after three iterations (dotted). The latter corre-

spond to slices through Figs. 8C and 8D.

However, because of the diffusive nature of light trans-
port in scattering media, and the subsequent blurring of
high-spatial-frequency information, there remains a sec-
ond type of ill-posedness, indicated by the gradual decay
of the singular values. This type of ill-posedness is much
less severe than the nonuniqueness and can be overcome
by applying Tikhonov (or other) regularization.

The results of the inversion for c¢(x) and a(x), with an
initial guess of 5 everywhere for both parameters, using
data at four wavelengths, and following three Newton it-
erations with Tikhonov regularization are shown in Fig.
8. Profiles are shown in Fig. 9. Although the noise has af-
fected the estimate of ¢ more than that for c, it is clear
that both parameters have successfully been recovered
without any “crosstalk” between them.

5. DISCUSSION

In this paper, several approximations have been used in
order to find a way to extract chromophore concentrations
from photoacoustic images. First, it was assumed that a
PAT image gives a measurement of the absorbed energy

density distribution fz(x). This is true only if (a) the initial
pressure distribution pg(x) has been recovered exactly,
and (b) the Griineisen parameter I'(x) is known. Neither
of these conditions will be quite true in practice, although
with the use of calibrated broadband ultrasound detec-
tors, a complete set of acoustic pressure measurements on
a surface surrounding p,, and an exact image reconstruc-
tion algorithm, a good quantitative estimate of pg(x) is
possible.
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Second, an approximate light model was used to model
the light transport in the tissue. The diffusion approxima-
tion will be accurate for depths greater than ~1/u,
(=0.5-1 mm in tissue), and if a more accurate model is
required for shallower depths, either one of the higher-
order P, approximations to the radiative transport equa-
tion [28] or the delta-Eddington adjustment to the diffu-
sion equation formulation [6,40,41] could be used.

Third, the simulations in this paper are in two dimen-
sions in order to keep the number of unknown parameters
low and therefore the inversion tractable. In reality, the
light will propagate in three dimensions. However, solu-
tions to the diffusion equation do not differ fundamentally
between two and three dimensions, and so the inverse
problem is expected to behave similarly in three dimen-
sions. Even for the very simple 2D example given in Sub-
section 4.E, the multiwavelength Jacobian required al-
most 100 MB storage. Clearly for more realistic problems,
in three dimensions and with more chromophores, the
matrices could easily become very large indeed. A 1 cm?®
image at 100 um resolution—achievable with current
PAT technology—has 1 X 10° voxels. If four chromophores
and scattering are included in the inversion, the Hessian
will have 25X 1012 elements, requiring hundreds of ter-
abytes of storage. This is a large-scale inverse problem,
and while Newton’s method was used here to demonstrate
the principle that knowledge of the wavelength-
dependence of scatter can be used to overcome the nonu-
niqueness, for a large scale problem it would not be fea-
sible to store the Hessian, let alone calculate its inverse.
(This might be feasible up to a point with state-of-the-art
high-performance computing, but such facilities are not
universally available.) In this case alternative approaches
must be used. One key step is the adjoint model, Eq. (14),
that can be used to calculate the gradients efficiently,
even for large-scale problems. If the gradients can be cal-
culated, then conjugate-gradient or quasi-Newton meth-
ods such as BFGS could be used to tackle the inversion,
which would obviate the need to calculate the Hessian
matrix directly.

Another practical issue of interest is the range of
signal-to-noise ratios over which this inversion will work.
This is not investigated in this paper, but is seems likely
that when the target tissue is illuminated from just one
direction, there will be a trade-off between the depth to
which this inversion is accurate and the degree of attenu-
ation of the light (the magnitude of the absorption and
scattering coefficients). In some circumstances it may be
possible to design illumination geometries to mitigate this
difficulty.

6. CONCLUSIONS

The nonlinear optical inversion of photoacoustic (PAT) im-
ages for chromophore concentrations and scattering coef-
ficients was described, and a framework given for their
solution. The principle contributions of this paper are (1)
to show that different chromophores can be separated us-
ing a multiwavelength approach when the optical scatter-
ing is known (an adjoint model was provided for the effi-
cient calculation of the functional gradients in this case),
(2) to show that a scattering-absorption nonuniqueness
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prevents inversions for the absorption coefficient from a
single-wavelength photoacoustic image unless the scat-
tering is known a priori, and (3) the demonstration that
the use of prior knowledge of the wavelength dependence
of the scattering is sufficient to overcome this nonunique-
ness and allow the recovery of the concentration distribu-
tions of the constituent chromphores.
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