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ABSTRACT

Accurate identification of tissue structures such as nerves and blood vessels is critically important for interven-
tional procedures such as nerve blocks. Ultrasound imaging is widely used as a guidance modality to visualize
anatomical structures in real-time. However, identification of nerves and small blood vessels can be very challeng-
ing, and accidental intra-neural or intra-vascular injections can result in significant complications. Multi-spectral
photoacoustic imaging can provide high sensitivity and specificity for discriminating hemoglobin- and lipid-rich
tissues. However, conventional surface-illumination-based photoacoustic systems suffer from limited sensitivity
at large depths. In this study, for the first time, an interventional multispectral photoacoustic imaging (IMPA)
system was used to image nerves in a swine model in vivo. Pulsed excitation light with wavelengths in the ranges
of 750 - 900 nm and 1150 - 1300 nm was delivered inside the body through an optical fiber positioned within
the cannula of an injection needle. Ultrasound waves were received at the tissue surface using a clinical linear
array imaging probe. Co-registered B-mode ultrasound images were acquired using the same imaging probe.
Nerve identification was performed using a combination of B-mode ultrasound imaging and electrical stimula-
tion. Using a linear model, spectral-unmixing of the photoacoustic data was performed to provide image contrast
for oxygenated and de-oxygenated hemoglobin, water and lipids. Good correspondence between a known nerve
location and a lipid-rich region in the photoacoustic images was observed. The results indicate that IMPA is
a promising modality for guiding nerve blocks and other interventional procedures. Challenges involved with
clinical translation are discussed.
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1. INTRODUCTION
Accurate identification of critical tissue structures is of great importance for interventional procedures. With
nerve blocks, these structures include nerves and blood vessels. Ultrasound (US) imaging is widely used for real-
time guidance. However, US imaging can provide insufficient image contrast for soft tissue structures such as
nerves and blood vessels, even when power Doppler is used.1,2 Accidental intra-neural or intra-vascular injections
can result in significant complications.3

Several methods have been used to facilitate nerve identification in clinical practice.1 Traditionally paraesthe-
sia was used, in which contact between the needle and the nerve was detected by the patient. Nerve stimulators
are used in current clinical practice, however with this method it is still not possible to completely avoid com-
plications and therefore alternative methods are highly desired.

Optical detection of nerves has attracted intensive research interest in recent years. These optical methods in-
clude optical reflectance spectroscopy,4–6 confocal imaging,7 coherent anti-Stokes Raman scattering microscopy,8

optical coherence tomography,9 and fluorescence imaging with exogeneous contrast agents.10 However, these
imaging modalities lack sufficient imaging depth for clinical applications due to strong light absorption and scat-
tering in biological tissues. Photoacoustic imaging is a solution to this problem.11 Conventional PA imaging
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systems deliver excitation light at the tissue surface. The sensitivity of imaging systems decreases exponentially
with depth; imaging beyond a few centimeters in depth presents significant challenges.12 Interventional PA
imaging systems address this issue by delivering light close to the region of interest and detecting US waves at
the tissue surface.13–17 In the authors’ group, an interventional system for guiding various minimally invasive
procedures based on a clinical US imaging system was developed. Its performance was evaluated using phantoms,
and ex vivo tissue samples including human blood cells, porcine fat, nerves and tendons.14–17 In this paper, for
the first time, an interventional multispectral PA imaging system was used to guide nerve blocks in a swine
model in vivo, in which excitation light with two wavelength ranges (750 - 900 nm and 1150 - 1300 nm) were
used to identify nerves and blood vessels.

2. MATERIALS AND METHODS

2.1 The imaging system

Figure 1: Schematic illustration of the interventional multispectral photoacoustic imaging system.

The imaging system was reported in detail elsewhere;14–16 here it is described briefly. The excitation light
was provided by an optical parametric oscillator (OPO) system (VersaScan L-532, Spectra-Physics, Santa Clara,
CA) pumped by a Nd:YAG laser (pulse width 6 ns, repetition rate 10 Hz, Quanta-Ray, INDI-40-10, Spectra-
Physics, Santa Clara, CA). The wavelength-tunable OPO had two output wavelength ranges: the signal (700
- 900 nm) and the idler (1100 - 2200 nm), with wavelength tuning controlled by a custom Labview program
(National Instruments, Berkshire, UK) via a motorized crystal. The OPO outputs were focused onto separate
optical fibers, which delivered light to a single fiber that was positioned within the cannula of a 14 gauge spinal
needle to deliver light in front of the needle tip (Figure 1).

US detection was based on a commercial US imaging system (SonixMDP, Analogic Ultrasound, Richmond,
BC, Canada). To access its low level libraries, the system was operated in its research mode. A 14-5 MHz linear
array transducer (L14-5/38, Analogic Ultrasound, Richmond, BC, Canada) was used as the US receiver. Raw
data from the transducer was sampled at 40 MHz with a 12-bit ADC by a 128-channel data acquisition system
(SonixDAQ, Analogic Ultrasound, Richmond, BC, Canada). Acquisitions of PA and US data were triggered by
optical pulses. A digital control window in combination with a logical AND gate was used to control the triggering
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of the US system, to control the speed of imaging. Real-time PA image reconstruction was performed using a
custom delay-and-sum beam-forming algorithm. The B-mode US images were reconstructed using electronic
beam-forming, and were displayed alongside the PA images. Offline PA image reconstruction was performed
using a Fourier-domain reconstruction algorithm implemented within the k-Wave MATLAB toolbox.18
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Figure 2: Schematic illustration of the spectral unmixing method used to estimate the chromophore con-
centration coefficients (HbO2, Hb, water and lipid) from the acquired multispectral photoacoustic imaging
data. Spectra data were derived from Ref.20

2.2 Spectral unmixing

After PA image reconstruction, a multispectral image matrix Mn×m was acquired, in which n is the number of
pixels in each PA image, and m is number of excitation light wavelengths. Using a matrix of previously measured
optical absorption spectra of chromophores, Sk×m, in which k is the number of chromophores considered, and
with the assumption of linearity,19 we have:

Mn×m = Cn×k ∗ Sk×m (1)

where Cn×k is a matrix of concentration coefficients. An estimate of this matrix, C̃n×k , is obtained with:

C̃n×k = Mn×m ∗ S+
m×k (2)

In which S+
m×k is the Moore-Penrose inverse matrix of Sk×m:

S+
m×k = ST

m×k(Sk×mST
m×k)

−1 (3)
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In this study, oxygenated and deoxygenated blood were considered as the main contributing chromophores
in the wavelength range of 750 - 900 nm; lipids, water were considered as those in the wavelength range of 1150
- 1300 nm. Their optical absorption spectra data was derived from Ref,20 and are shown in Figure 2.
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Figure 3: Insertion to the brachial plexus in a swine model in vivo. The ultrasound image (a) and the pho-
toacoustic images acquired with excitation wavelengths of 800 nm (b) and 1210 nm (c) were obtained with
the same linear-array imaging probe at the surface. Spectral unmixing of the acquired photoacoustic images
acquired with excitation wavelengths in the range of 750 - 900 nm yielded the concentration coefficients
of HbO2 (d) and Hb (e). The measured and modelled spectra at position A1 (e) were in good agreement
(f). Spectral unmixing of the acquired photoacoustic images acquired with excitation wavelengths in the
range of 1150 - 1300 nm yielded the concentration coefficients of water (g) and lipids (h). The measured
and modelled spectra at position A2 (h) were also in good agreement (i), with peaks at 1210 nm.

2.3 In vivo experiments

The in vivo swine experiment was performed with ethics approval at the Northwick Park Institute for Medical
Research (London, UK). It was performed in a swine model with needle insertions to the brachial plexus under
US image guidance. Prior to PA imaging, the close proximity of a nerve to the needle tip was confirmed by nerve
stimulation. The wavelength ranges of excitation light were selected based on the optical absorption spectra of
lipids, water, oxygenated and deoxygenated blood (Figure 2). PA images with excitation light wavelengths from
750 - 900 nm and from 1150 - 1300 nm were acquired with wavelength intervals of 10 nm. All experimental
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procedures were conducted according to the UK Home Office regulations and the Guidance for the Operation of
Animals (Scientific Procedures) Act (1986).

3. RESULTS

With the needle tip positioned in the vicinity of the brachial plexus, an artery was clearly visible in the US
image (Figure 3a). A nerve beneath the artery was identified with nerve stimulation, but it was not apparent in
the US image. Excitation wavelengths of 800 nm and 1210 nm both yielded PA signals from tissue close to the
needle tip (Figure 3b,c). Spectral unmixing of multispectral PA images from the wavelength range of 750 - 900
nm revealed that these PA signals originated primarily from deoxygenated blood (Figure 3d,e), which may have
originated from bleeding adjacent to the needle tip. Good agreement between the PA spectra with high signal
amplitudes and the linear model [Equation (1)] was observed (Figure 3f). Spectral unmixing of multispectral PA
images from the wavelength range of 1150 to 1300 nm revealed differences in the spatial distributions of water
(Figure 3g) and lipids (Figure 3h), with the latter extending farther from the needle tip into the region identified
as a nerve. The PA spectra with high signal amplitudes had prominent peaks at 1210 nm, in agreement with
modelled data (Figure 3i).

4. DISCUSSION AND CONCLUSIONS

We presented, for the first time, interventional multispectral PA imaging of a peripheral nerves in the vicinity of
the brachial plexus of a swine model in vivo. Excitation light with wavelength ranges of 750 - 900 nm and 1150
- 1300 nm were used. Spectral unmixing using linear inversion was used to obtain the concentration coefficients
for HbO2, Hb, water and lipids in a region in front of the needle tip. A region with high lipid concentration
coefficients was coincident with a neural structure.

The results of this study indicate that lipids are a source of endogenous PA contrast that could be valuable for
identifying nerves. However, since lipids are known to also be present in anatomical regions distinct from nerves,
such as perineural adipose tissue and fascial planes, anatomical information provided by US imaging could be
beneficial. Excitation light delivered through the needle could be beneficial in terms of yielding stronger PA
signals in the vicinity of the needle tip, as compared with surface illumination. However, this paradigm has
limitations: fluences near the needle tip are high,14 and excitation light is provided over a limited spatial region.
Delivery of excitation light may prove to be most beneficial for tissue targets that are beyond the imaging depth
of PA imaging systems with surface illumination, in conjunction with conventional US imaging. Decreasing the
fluence, which could be accomplished using diffusers, will be important for clinical translation. Knowledge of
the needle tip, which could be obtained using ultrasonic needle tracking,21 could be beneficial for increasing the
accuracy of spectral unmixing. To assist with the guidance of nerve blocks, multispectral PA imaging could be
valuable to supplement US imaging by providing spectroscopic optical specificity.
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