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ABSTRACT

Photoacoustic tomography (PAT) is an imaging technique combining strong contrast of optical imaging to high
spatial resolution of ultrasound imaging. These strengths are achieved via photoacoustic effect, where a spatial
absorption of light pulse is converted into a measurable propagating ultrasound wave. The method is seen as
a potential tool for small animal imaging, pre-clinical investigations, study of blood vessels and vasculature, as
well as for cancer imaging.

The goal in PAT is to form an image of the absorbed optical energy density field via acoustic inverse problem
approaches from the measured ultrasound data. Quantitative PAT (QPAT) proceeds from these images and
forms quantitative estimates of the optical properties of the target. This optical inverse problem of QPAT is ill-
posed. To alleviate the issue, spectral QPAT (SQPAT) utilizes PAT data formed at multiple optical wavelengths
simultaneously with optical parameter models of tissue to form quantitative estimates of the parameters of
interest.

In this work, the inverse problem of SQPAT is investigated. Light propagation is modelled using the diffusion
equation. Optical absorption is described with chromophore concentration weighted sum of known chromophore
absorption spectra. Scattering is described by Mie scattering theory with an exponential power law. In the
inverse problem, the spatially varying unknown parameters of interest are the chromophore concentrations, the
Mie scattering parameters (power law factor and the exponent), and Grüneisen parameter. The inverse problem
is approached with a Bayesian method. It is numerically demonstrated, that estimation of all parameters of
interest is possible with the approach.
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1. INTRODUCTION

Absorption of a short light pulse by soft tissue results in photoacoustic effect, where the absorbed energy is
converted into an initial pressure distribution and a propagating acoustic wave.1–3 Photoacoustic tomography
(PAT) attempts to form images of this initial pressure distribution, based on boundary measurements of the
acoustic wave emitted via the photoacoustic effect.2,3 Quantitative photoacoustic tomography (QPAT) proceeds
from the PAT reconstructions of the initial pressure distribution and seeks to deduce the optical properties of
the target of interest, based on optical models of light propagation.2,3 One potential issue with QPAT, however,
is that the absorbed optical energy density (the optical models) and the initial pressure distribution and the
measured acoustic wave (the acoustical model) are connected via Grüneisen parameter, which in general is not
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known. Furthermore, estimation of the optical parameters (the quantification step) in QPAT is not only ill-
posed, but can be non-unique as well. Spectral quantitative photoacoustic tomography (SQPAT) attempts to
alleviate the issue by utilizing prior knowledge of the optical properties of tissue (as a function of wavelength)
and measurements obtained at multiple optical wavelengths.4–10

In this work, the (optical) inverse problem in SQPAT is studied. The optical forward model, based on
the diffusion approximation of the radiative transfer equation,11–13 is formulated in terms of spectral parameter
models of optical absorption and scattering. The absorption is described by chromophore concentration weighted
sum of known absorption spectra of the chromophores, whereas the scattering is described by using Mie scattering
theory. The forward model is used to solve the inverse problem by using Bayesian framework.14–16 Parameters,
that are estimated, are the chromophore concentrations, the Grüneisen parameter, and the Mie scattering theory
based proportionality factor and exponent, all spatially varying.

2. FORWARD MODEL

The optical properties of biologial tissue typically depend on the optical wavelength. Within near-infrared
wavelengths, the optical absorption can be expressed as5–9

µa(r, λ) =

N∑
n=1

cn(r)µa,n(λ), (1)

where r ∈ Ω ⊂ Rk is the position, k is the number of spatial dimensions, λ is the wavelength of light, cn
(n = 1, ..., N) is the chromophore concentration of nth chromophore, and µa,n is the absorption spectra of each
chromophore. In this work, the concentrations cn should be interpreted as relative concentration with respect
to the absolute absorption given by the absorption spectra µa,n; that is, if the absorption spectra is given by
the absorption at molar concentration α, then cn would correspond to molar concentration cnα. The optical
(reduced) scattering follows the Mie scattering power-law

µ′s(r, λ) = a(r)λ−b(r), (2)

where a(r) and b(r) are the proportionality and exponent terms of the power-law. Equivalently, (2) can be
expressed as

µ′s(r, λ) = µ′s,REF(r)
( λ

λREF

)−b(r)
, (3)

where µ′s,REF(r) is the optical scattering at reference wavelength λREF, and it holds that a(r) = µ′s,REF(r)λ
b(r)
REF.

Mie scattering power-law of form (3) is used for the rest of the paper.

With the spectral optical parameter models (1) and (3), the optical forward model of SQPAT can be expressed
as

p0(r, λ) = γ(r)µa(r, λ)Φ(r, λ), (4)

where p0 is the (spatial) initial pressure distribution, γ is the Grüneisen parameter, and Φ is the optical fluence,
which is assumed here to be described by the optical diffusion equation11,12

−∇ · κ(r, λ)∇Φ(r, λ) + µa(r, λ)Φ(r, λ) = 0, (5)

where κ(r, λ) = (k(µa(r, λ) + µ′s(r, λ)))−1 with the boundary condition

ζkΦ(r, λ) +
1

2
κ(r, λ)∇Φ(r, λ) · ν = s(r, λ), (6)

where ζk is dimensionality k related parameter (ζ2 = π−1, ζ3 = 4−1), ν is the unit normal on the boundary, and
s describes the inward light current (light source) on the boundary.

In practice, observations of p0 in SQPAT are obtained after performing an acoustic reconstruction from the
measured time domain acoustic boundary data. These observations, on the other hand, are obtained using some
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discrete wavelengths, and some spatial illumination pattern. Therefore, the forward model (4) can be expressed
as

p0,m(r) := p0(r, λm) = γ(r)µa(r, λm)Φm(r, λm), (7)

where m = 1, ...,M denotes the measurement index, λm is the wavelength used to obtain measurement m, and
Φm is the fluence resulting from illumination with light source sm.

In this work, the forward model (7) is discretized by using finite element method (FEM), into grid nodes rq
(q = 1, ..., Q), resulting in

p0,m(rq) = γ(rq)µa(rq, λm)Φm(rq, λm), m = 1, ...,M, q = 1, ..., Q, (8)

which can equivalently be written as
y′ = f(x), (9)

where y′ ∈ RMQ and f(x) : R(N+3)Q → RMQ correspond to left and right hand sides of (8) respectively, and x is
the collection of parameters of interest in SQPAT: chromophore concentrations c1, ..., cN , Grüneisen parameter
γ, and the Mie scattereing parameters µ′s,REF and b, each spatially varying. For details on the numerical

implementation, see.10

3. BAYESIAN INVERSION

In this work, the estimation of the parameters of interest is done following the Bayesian framework.14–16 Obser-
vation model for an additive error model is

y = f(x) + e, (10)

where y ∈ RMQ is the fixed (noisy) observation polluted with noise e ∈ RMQ. Let p(·) denote probability density
function of a random variable. It follows, from the observation model (10), that the conditional distribution of
y for a given x independent of e is

p(y | x) = pe(y − f(x)), (11)

where pe is the probability density function of the noise e. Equation (11) is called the likelihood function. The
Bayes’ theorem states that

p(y | x) p(x) = p(x | y) p(y). (12)

Given an observation (sample) y, which is a fixed vector, p(y) is a constant and it follows from the Bayes’ theorem
that

p(x | y) ∝ p(y | x) p(x). (13)

Substituting the likelihood function (11), and incorporating all the prior knowledge of the unknown parameter
x into p(x) = px(x), the posterior density function is found to be

p(x | y) ∝ pe(y − f(x)) px(x). (14)

Assuming that the noise e follows normal distribution and that we choose the prior information of x to be
described by a normal distribution as well, the posterior density function (14) can be expressed as∗

p(x | y) ∝ exp
(
− 1

2
u(x, y)

)
, (15)

where
u(x, y) = ||Le(y − f(x)− ηe)||2 + ||Lx(x− ηx)||2, (16)

∗For some random vector z ∈ RN that follows the normal distribution, such that z ∼ N (ηz,Γz), the probability density
function is

pz(z) =
(

(2π)N |Γz|
)−1/2

exp
(
− 1

2
||Lz(z − ηz)||2

)
,

where |Γz| is the determinant of the covariance matrix, and L>z Lz = Γ−1
z is the Cholesky decomposition of the inverse

covariance matrix.
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and e ∼ N (ηe,Γe), x ∼ N (ηx,Γx) with L>e Le = Γ−1e and L>x Lx = Γ−1x . The posterior density function describes
the statistical knowledge of x as inferred by a given observation y. From the posterior distribution, it is possible
to obtain, for example, credibility intervals, and point estimates. The point estimate that is used in this work is
the maximum a posteriori (MAP) estimate, which can be shown to be

xMAP = arg min
x

u(x, y). (17)

In this work, MAP estimates are obtained by using Gauss-Newton iteration.

In this work, the prior that is used is the Ornstein-Uhlenbeck prior,10,17,18 defined for spatially varying
parameter z at grid nodes rq via identity covariance matrix Ξ as

Γz = σ2
zΞ, {Ξ}ij = exp(−||ri − rj ||/ξ), i, j = 1, ..., Q, (18)

where z ∈ {c1, ..., cN , γ, µ′s,REF, b}, z ∼ N (ηz,Γz), and ξ is the characteristic length scale. The Ornstein-
Uhlenbeck prior descibes a spatial parameter distribution, that has exponentially decaying spatial covariance as
a function of distance between two points. Thus the prior promotes estimates that have some level of spatial
structure in them, as is reasonable to expect in biomedical applications. For each of the estimated parameters,
ηz and σz were chosen as

ηz =
1

2
(max z + min z), σz =

1

2
(max z −min z), (19)

where max z and min z are the maximum and minimum values that z is assumed to vary between. This choice
corresponds to expecting the unknown values to reside in the range [min z,max z] with probability of 68.3% and
supporting values outside the expected range as well. The combined prior can thus be expressed as x ∼ N (ηx,Γx)
with

ηx = (ηc1 , ..., ηcN , ηγ , ηµ′
s,REF

, ηb), Γx = Diag{Γc1 , ...,ΓcN ,Γγ ,Γµ′
s,REF

,Γb}. (20)

4. SIMULATIONS

In this work, the studied geometry is a two dimensional circle with radius of 5 mm and center at origin. Total
of six illuminations (two illuminations at three distinct wavelengths) are used in the forward model:

s1(r) = s(r, λ1) = |r1| / 5 mm, s2(r) = s(r, λ1) = |r2| / 5 mm,

s3(r) = s(r, λ2) = |r1| / 5 mm, s4(r) = s(r, λ2) = |r2| / 5 mm, (21)

s5(r) = s(r, λ3) = |r1| / 5 mm, s6(r) = s(r, λ3) = |r2| / 5 mm,

where r = (r1, r2) with r1 and r2 being the horizontal and vertical coordinates, | · | is the absolute value, and the
wavelengths are λ1 = 700 nm, λ2 = 800 nm, λ3 = 900 nm. Illuminations s1, s3, and s5 describe a light source
originating simultaneously from the left and right of the target domain, and illuminations s2, s4, and s6 a source
originating from top and bottom.

The parameters (c1, ..., cN , γ, µ
′
s,REF, b) of the target were chosen such that they are in biologically relevant

magnitude. The target was composed of N = 3 chromophores: fat (c1), deoxygenated (c2) and oxygenated
(c3) blood. The absorption spectra used for the chromophores, at the used wavelengths, are shown in Table 1.
Two sets of parameters were studied: smoothly varying parameters and parameters with sharp boundaries. The
parameters used to generate the simulated data (virtual measurements) are shown in Figure 1.

After simulating the data in a triangulated mesh with Q = 4480 grid nodes, the data was interpolated to a
lower density triangulated mesh with Q = 3027 grid nodes and noise was added to it. Interpolation was done
in order to avoid inverse crime during the estimation. The noise, that was added, was drawn from a normal
distribution with zero mean and for each illumination sm had standard deviation of σm = 0.001 maxq p0,m(rq).
The data corresponding to the parameters is shown in Figure 2.

The MAP estimates (17) were obtained by using a Gauss-Newton algorithm augmented with a line search. For
the noise statistics, accurately characterized parameters were assumed with ηe = 0 and Γe = Diag{σ2

1 , ..., σ
2
6}.

For the prior, the Ornstein-Uhlenbeck was used, as defined in (20), with ξ = 1 mm. The MAP estimates of
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Table 1. Absorption spectra used in this paper: µa,1 corresponds to fat,19 µa,2 and µa,3 to deoxygenated and oxygenated
blood at physiologically realistic molar concentrations.20

λ (nm) µa,1(λ) (mm−1) µa,2(λ) (mm−1) µa,3(λ) (mm−1)
700 0.0700 0.9781 0.1713
800 0.0750 0.4496 0.4632
900 0.0800 0.4754 0.7155

Figure 1. Smoothly (on the left) and sharply (on the right) varying parameters used to generate the simulated data.

Figure 2. Simulated data (p0,m as corrupted by noise) computed with smoothly (on the left) and sharply (on the right)
varying parameters. The illumination (21), corresponding to each data, is marked in the figure.

c1, c2, c3, γ, µ
′
s,REF, b are shown in Figure 3 and their relative errors are shown in Table 2. Relative errors were

computed using

E =
||zMAP − zTRUE||
||zTRUE||

, (22)

Proc. of SPIE Vol. 9708  97081G-5

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 03/24/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



Figure 3. MAP estimates computed with data that had smoothly (on the left) and sharply (on the right) varying param-
eters.

Table 2. Relative errors of the MAP estimates for the smoothly and sharply varying parameters studied.

Parameter Smooth Sharp
c1 43.3% 68.4%
c2 3.5% 6.1%
c2 3.4% 6.7%
γ 2.2% 2.9%

µ′s,REF 7.6% 8.5%

b 18.9% 22.5%

where zMAP is the MAP estimate of any of c1, c2, c3, γ, µ
′
s,REF, b, and zTRUE is the respective true parameter

value, and || · || is the l2-norm of the discretized vector.

The MAP estimates, shown in Figure 3, demonstrate that the approach can be used to quantitatively (and
thus qualitatively) estimate all the parameters of interest (c1, ..., cN , γ, µ

′
s,REF, b). The estimate of fat (c1) is

evidently poor due to its low optical absorption in comparison to blood (c2 and c3). However, when the true
c1 was sharply varying, the estimates resemblance to the true parameter especially away from the center of
the domain is evident, whereas the largest differences are found at the center of the domain. This is, at least
partially, explained by the fact that the center of the domain has the poorest quality data coming from for all the
illuminations due to the low fluence. Both of the blood parameters (c2 and c3) are well resolved with smoothly
and sharply varying parameters. The Grüneisen parameter (γ), and the scattering parameters (µ′s,REF and b) are
not estimated as sharply as the blood parameters, but their estimates still resemble the true parameters. The
relative errors, shown in Table 2, show that the sharply varying parameters are all estimated to lower accuracy
than the smoothly varying parameters.

5. CONCLUSION

A forward model for the spectral quantitative photoacoustic tomography based on the diffusion approximation
of the optical fluence was presented. Chromophore concentration weighted sum was used to describe the optical
absorption as a function of wavelength, whereas Mie scattering theory was used for the reduced scattering. The
model was used in the Bayesian framework to form estimates of two dimensional targets with parameter scales
in biologically relevant regime. The parameters of interest, the chromophore concentrations, Grüneisen, and the
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Mie scattering proportionality and exponent terms, all spatially varying, were successfully estimated using the
described approach.

The presented approach enables inclusion of quantitative prior information into the estimation process in
SQPAT. This is important, as the inverse problem in SQPAT is ill-posed, which can render the problem nu-
merically unstable. Furthermore, the Bayesian approach permits inclusion of the statistical information of noise
and uncertainties present in the measurement setup into the estimation. Although, only MAP estimates were
inspected in this work, the Bayesian approach provides the entire posteriori distribution of the unknowns as
a solution to the inverse problem. In addition to MAP estimates, error of the estimates in the form of e.g.
credibility intervals can also be computed.
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