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ABSTRACT

We propose a novel multispectral reconstruction-classification method for simultaneously recovering absorption
and scattering coefficients from images of absorbed optical energy. In contrast with pre-existing chromophore
reconstruction methods, this approach does not require prior knowledge of the characteristic spectra of the ab-
sorbers, which is not always available. Numerical experiments performed on anatomically realistic 3D phantoms
show that this approach allows for improved recovery of both the optical absorption and scattering with respect
to reconstruction-only methods, and accurate classification of chromophores of clinical interest.
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1. INTRODUCTION

1.1 Quantitative photoacoustic imaging

Quantitative photoacoustic tomography (QPAT) aims to recover the optical absorption and scattering coefficients
of biological tissues in order to obtain clinically relevant information about tissue morphology and functionality.1,2

Conventional photoacoustic (PA) images are obtained from measurements of the acoustic waves resulting from
the rapid heating of tissue by a laser pulse, this is known as the photoacoustic effect .3 From these measurements,
an image of the initial acoustic pressure distribution p0 is recovered, which in turn is related to the absorbed
optical energy density H by the Grüneisen parameter Γ̂:

H(r) = Γ̂p0(r) r ∈ Ω. (1)

The photoacoustic imaging problem is well understood, and several methods exist for recovering PA images,
such as FFT,4 time-reversal,5,6 model-based,7–9 and sparsity-based methods.10,11 However, PA images are not
directly representative of the underlying tissue structure because spatial variations in the illumination pattern
cause the optical energy to be absorbed non-uniformly throughout the tissue. If φ(r) is the optical fluence
generated by the laser within the tissue, then we have

H(r) = Γ̂µa(r)φ(r) r ∈ Ω, (2)

where µa is the absorption coefficient. The quantitative photoacoustic problem, is to recover an image of the
optical absorption µa(r) (which is directly related to tissue morphology) from estimates of the absorbed energy
density H(r) (which is not). The problem is non-linear because the fluence in turn depends on the optical
parameters φ(µa(r), µ′s(r)), where µ′s(r) is the reduced scattering coefficient.

QPAT can provide clinically valuable images of endogenous chromophores, such as oxy- or deoxy-hemoglobin,
melanin, lipids and water. Exogenous contrast agents, enzymes, or proteins linked to the expression of a gene of
interest, may also be imaged.
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1.2 Multispectral reconstruction-classification

We have recently proposed a novel method for reconstructing QPAT images via a reconstruction-classification
algorithm.12 This method exploits knowledge that optical parameters are determined by a limited number
of classes to iteratively improve their estimate. Here, we extend the reconstruction-classification method to
multi-wavelength measurements, which allows for the identification of individual chromophores. In contrast with
pre-existing chromophore reconstruction methods, this approach does not rely on accurate prior knowledge of
the characteristic spectra of the absorbers. As such, it is robust to experimental errors committed in measuring
chromophore spectra, in addition to unknown local or physiological variations. Instead, a probabilistic model
for the tissue properties is initialized and updated automatically on the basis of the data by a classification
algorithm. In this paper, we describe the multispectral reconstruction-classification algorithm, present results
obtained in numerical experiments using an anatomically realistic 3D phantom, and compare the results to a
typical reconstruction-only method.

2. METHODS

2.1 Diffusion model

A model is required to describe light transport inside the tissue, and predict the expected optical fluence. For
highly scattering media we can use the diffusion approximation13

(µa −∇ · κ(r)∇)φ(r) = q(r), (3)

where q(r) is an isotropic source term, and κ = 1/3µ′s is the diffusion coefficient. We take the Grüneisen parameter
to be constant Γ̂ = 1. In order to treat the image reconstruction problem, we project the physical quantities onto
a Finite Element basis {ui(r); i = 1, . . . , I}, and consider the discretisation (µa,µ

′
s) = {(µa, µ′s); i = 1, . . . , I}.

We solve by minimizing an error functional

E =
1

2

I∑
i

[
dmi −

〈
ui, H(µa,µ

′
s)
〉]2

+R(µa,µ
′
s). (4)

where R(µa,µ
′
s) is a regularising function, H(µa,µ

′
s) is the absorbed energy density predicted by the diffusion

model, and

dmi =

∫
Ω

Hm(r)ui(r) dΩ = 〈ui, Hm〉 (5)

is the projection of the estimated energy density Hm onto the basis function ui.

If measurements are taken at multiple wavelengths l = 1, . . . L and illumination patterns q = 1, . . . , Q, then
these can be considered simultaneously by taking the sum of the data term

E =
1

2

∑
ilq

1

wl

[
dmilq −

〈
ui, Hq(µal,µ

′
sl

)
〉]2

+R(µa1, . . . ,µaL,µ
′
s1
. . . ,µ′

sL
). (6)

The weighting wl = 1
L

∑
iq

[
dmilq −

〈
ui, Hq(µa

0
l ,µ

′
s

0
l
)
〉]2

, where (µa
0,µ′

s
0
) is the initial guess of the optical

parameters, is chosen so that E|(µa
0,µ′

s
0) = 1. For gradient calculations for the diffusion model see Malone et

al.12

2.2 Spectral model for the optical parameters

In the following, we propose a method to aid the recovery of the absorption and scattering coefficients by assuming
a spectral model for the optical parameters . We build a probabilistic model, which links the optical properties
of the object of interest to the characteristic spectra of its components. It is assumed that each chromophore
(such as oxy- and deoxy-hemoglobin, fat, water etc.) has a unique optical spectrum. For a given chromophore j,
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the absorption and scattering are drawn from a multinomial Gaussian distribution N (mj ,Σj), where mj ∈ R2L,
Σj ∈ R2L×2L, and L is the number of wavelengths. We define the auxiliary labels

ζij =

{
1 if the ith node is assigned to the jth class;
0 otherwise.

(7)

for nodes i = 1 . . . , I and chromophores j = 1, . . . , J . The probability of a set of labels ζi = {ζij ;∀j} being

assigned to the ith node is given by a multinomial distribution p(ζi|λ) =
∏
j λ

ζij
j , where λj is the overall

probability that a node is assigned to the jth class. Assuming independence between the nodes, then the joint
probability for the optical parameters and labels is given by the product

p(x, ζ|m,Σ,λ) =
∏
i

p(xi|ζi,m,Σ)p(ζi|λ) =
∏
ij

[λjp(xi|mj ,Σj)]
ζij . (8)

where xi = {(µail, µ′sil);∀l} ∈ R2L and p(xi|mj ,Σj) ∝ N (mj ,Σj). Finally, by marginalizing over all possible
values of the labels, a mixture of Gaussians model for the optical parameters is obtained

p(x|m,Σ,λ) =

∫
ζ

p(x, ζ|m,Σ,λ)dζ =
∏
i

∑
j

λjp(xi|mj ,Σj). (9)

2.3 Reconstruction-classification method

In the Bayesian framework, a spectral regularization term for the image reconstruction problem is obtained by
taking

R(µa,µ
′
s) = − log p(x|m,Σ,λ) = − logN (x̄,Σx̄) =

τ

2
‖Lx̄(x− x̄)‖2, (10)

where τ is the regularization parameter; x̄ ∈ R2LN indicates for each node the mean of the class assigned by a
certain labelling ζ̄; and Lx̄ ∈ R2LN×2LN contains a 2L×2L block for each node, indicating the assigned covariance
matrix. Note that it is necessary in this case to consider multi-wavelength measurements simultaneously because
the covariance in the regularisation term may have non-zero off-diagonal values.

We propose to perform alternating reconstruction and classification steps for a fixed number of outer iterations
t = 1, . . . , T . In reconstruction step t, the objective function obtained by inserting equation (10) into (6) is
minimised using l-BFGS,14 and an updated set of images xt is obtained. In classification step t, the labelling

ζ̄
t

and class parameters (mt,Σt,λt) are updated on the basis of the new xt, and a new regularization term
Rt+1(µa,µ

′
s) (to be used in the following reconstruction step) is computed.

An expectation-maximization algorithm is employed to perform fuzzy k-means15 classification and update
the class parameters. First, the labelling ζ̄

t
is determined by computing the expected value of the labels∫

ζijp(ζij = 1|xti,mt,Σt,λt) dζij = 0× p(ζij = 0|xti,mt,Σt,λt) + 1× p(ζij = 1|xti,mt,Σt,λt)

=
p(xi|ζij = 1,mt,Σt)p(ζij = 1)

p(xi|θ,λ)

=
λtjp(xti|mt

j ,Σ
t
j)∑

j λ
t
jp(xti|mt

j ,Σ
t
j)

= rtij , (11)

and setting

ζ̄t+1
ij =

{
1 if rtij is maximum ∀j,
0 otherwise.

(12)

This gives the mean of the regularization term Rt+1(µa,µ
′
s) (10)

x̄t+1
i =

∑
j

ζ̄t+1
ij ·mj , (13)
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and determines the corresponding covariance Lt+1
x̄ . Then, the class parameters are updated by maximising the

log posterior
(mt+1,Σt+1,λt+1) = arg max

(m,Σ,λ)
log p(xt|m,Σ,λ) + log p(m,Σ,λ), (14)

which, for non-informative priors, gives the update rules:

λt+1
j =

∑
i r
t
ij

I
, (15)

mt+1
j =

∑
i r
t
ijx

t
i∑

i r
t
ij

, (16)

Σt+1
j =

∑
i r
t
ij(x

t
i −m

t+1
j )(xti −m

t+1
j )T + Γj∑

i r
t
ij + νj + d+ 1

, (17)

where d is the dimension of the domain, and νj and Γj are the parameters of the inverse Wishardt distribution,
i.e. the prior of the covariance. For more details on the reconstruction-classification method, see Malone et
al.12,16 and Hiltunen et al.17

2.4 Initialising the class parameters

To avoid reliance on prior knowledge of the chromophores, we propose an automated process by which to initialize
the classification algorithm. The mean optical parameters for each class are initialized by segmenting the first
reconstructed image for the absorption coefficient at each wavelength. Given the difficulty in recovering the
scattering, we ignore the images of µs at this stage. First, we inspect a histogram of the values of µa, and find
the most common occurrence µah. Then we select a covariance matrix Σµa

and compute a Gaussian probability
density function pdf = N (µah,Σµa

) for all values. We set the tolerance level to the value of the pdf at a distance

of 3
√

Σ1,1
µa from the mean along the first dimension, and put any node with pdf greater than the tolerance into

the first class. We repeat this process on the remaining nodes until 99.99% have been classified. We set the
number of classes to the number of iterations performed. Once the whole image has been segmented, the mean
optical parameters of the classes mj are initialized to the mean value of the corresponding image across each
area found, and the covariances are set to

Σj =

(
Σµa

0
0 Σµs

)
(18)

for all classes. The diagonal entries of the scattering covariance Σµs are chosen to be significantly larger than
those of Σµa to reflect the higher level of uncertainty in its recovery.

3. RESULTS

3.1 Numerical phantom and data simulation

We created an anatomically realistic numerical phantom from a vascular cast of a rat brain, obtained from a µCT
scan. The image was segmented to identify the background and the main vasculature. We subsequently added a
tumour inclusion, surrounded by a vascularised region (figure 2). The phantom was mapped to a 87× 77× 106
regular grid with resolution of a 200µm. The total size of the domain was 17.4× 15.4× 21.2 mm. We assigned
optical properties to the segmented regions based on the values reported by Jacques et al.18 for the absorption
and scattering coefficients of brain, oxy- and deoxy-haemoglobin, and water (figure 1). The vessels and tumour
were set to 45% full blood and 55% water. Blood oxygenation was set to 90% Hb02 to Hb for the vessels, and
60% for the tumour. The average mass concentration of haemoglobin in full blood was taken to be 150 L · g. The
background was set to the optical properties of brain tissue. The average mass concentration of haemoglobin in
the brain was 3.75% that of full blood, with 60% Hb02 and 40% Hb. The scattering was set to that of blood in
the vessels and tumour, and brain in the background.

Two illumination sources with Gaussian profile and radius 6 mm were placed in the centre of the yz-plane
(East), and the xz-plane (North). Data was simulated for each source and two wavelengths, 650 nm and 800 nm,
and 1% white Gaussian noise was added (figure 2).
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Figure 1. Absorption and scattering spectra of tissues used in numerical phantom.18

Figure 2. Left: 3D representation of the numerical phantom (blood vessels are marked in red, the tumour is marked in
blue). Centre: Boundary illumination profiles for each source position (East and North). Right: Logarithm of the data
(absorbed energy density H) simulated for each wavelength and source; maximum intensity projection images along the
z-direction.

3.2 Algorithm parameters and class initialization

We applied the L-BFGS-B algorithm to minimize the objective function in the reconstruction step.19,20 Con-
vergence tolerance was set to 1011× machine precision. We first performed one reconstruction step using no
regularization (figure 5, row 1), and then initialized the mean optical parameters for each class as described in
section 2.4 (figure 3). Three classes were found, and the covariances were initialised to

Σj =


10−4 0 0 0

0 5 · 10−4 0 0
0 0 10−1 0
0 0 0 10−1


650 nm
800 nm
650 nm
800 nm

}
µa}
µ′s

(19)

for all classes j = {1, 2, 3}. The parameters of the inverse Wishardt distribution (equation (17)) were set to
ν1 = 1 for the backround, ν2,3 = 103 for the vessels and tumour, and Γj = 103Σj ∀j. The regularitazion
parameter (equation (10)) was chosen by inspection of logarithmically spaced values (powers of 10), and set to
τ = 10−11.

Proc. of SPIE Vol. 9708  970827-5

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 03/24/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



0.15

0.1
oo
ao

O.,"" 0.05

0.15

ó
00

i 0.05

0.15

om

O.,"" 0.05

Histogram Scatter plot

0.05 0.1 0.15

µa, 650 nm

0 0.05 0.1
µa, 650 nm

0.15

0.1

0.05

0.15 0 0.05 0.1 0.15
µa, 650 nm

0.05 0.1
µa, 650 nm

0.15

10

8

6

4

2

0

om

0.15

0.1

0.05

0.05 0.1
µa, 650 nm

0.15

15

10

Class label

0
0 5 10 15

15

10

5

0
0 5 10 15

1

0.8

0.6

0.4

0.2

o

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

Figure 3. Initialization of the class means for the classification algorithm. Each row corresponds to an iteration of
the initialization process 2.4. Left: 2D histogram of values of µa recovered for each wavelength after one reconstruction
iteration. Centre: scatter plot showing nodes included in the class inside red line, and mean of the class indicated by a
cross. Right: result of the image segmentation, node i assigned to the class j is given ζij = 1, and 0 otherwise; maximum
intensity projection images along the z-direction.

3.3 Reconstruction-classification results

The image error was calculated by taking the norm of the difference between the reconstructed and simulated
(figure 4) optical properties

ReconErrtµa
=

∑
l

∥∥µatl − µamodel
l

∥∥∑
l

∥∥µamodel
l

∥∥ , (20)

ReconErrtµ′
s

=

∑
l

∥∥∥µ′
s
t
l
− µ′

s
model
l

∥∥∥∑
l

∥∥∥µ′
s

model
l

∥∥∥ . (21)

We also considered a classification error

ClassErrt =

∑I
i ζ̄

t
i · ζ

model
i

I
, (22)

that is the ratio of misclassified nodes.
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We performed 10 iterations of reconstruction-classification steps The result obtained without using a spectral
model is displayed in the first row (iteration 1) in figure 5. The final result (iteration 10) is displayed in the
third row. The results of the classification step are displayed in the fifth column. All the measures of image error
decreased over the iterations (figure 6).

Figure 4. Model of optical properties at simulated wavelengths; maximum intensity projection images along z-direction.

Figure 5. Reconstruction-classification results after 1 (row 1), 5 (row 2), and 10 iterations (row 3). Columns 1-4:
Rreconstructed values of µa and µ′

s for each wavelength (columns 1-4). Column 5: scatter plot of projections onto first
and second principle components of x (column 5). The crosses indicates the position of the mean of each class mj , and
the ellipses represent the class covariances Σj ∀j = {1, 2, 3} (9). The squares indicate the position of the simulated values
in the same coordinates.

4. CONCLUSIONS

We have proposed a novel method to identify and localize chromophores from photoacoustic images acquired
at multiple wavelengths. The method employs a probabilistic spectral model, which is updated iteratively as
the recovery of the optical parameters improves. The advantages of this technique are twofold. First, this
method does not rely on prior knowledge of the absorption spectra of the chromophores. Second, it allows for
the simultaneous recovery of the optical scattering together with the absorption. We have demonstrated the
application of our reconstruction-classification method using a realistic numerical phantom, and compared the
results to those obtained without employing a spectral model in terms of measurable image error criteria. We
have shown that the proposed reconstruction classification method can deliver improved recovery of both the
optical absorption and scattering, and the identification of distinct chromophore classes.
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