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ABSTRACT

In quantitative photoacoustic imaging, the aim is to recover physiologically relevant tissue parameters such as
chromophore concentrations or oxygen saturation. Obtaining accurate estimates is challenging due to the non-
linear relationship between the concentrations and the photoacoustic images. Nonlinear least squares inversions
designed to tackle this problem require a model of light transport, the most accurate of which is the radiative
transfer equation. This paper presents a highly scalable Monte Carlo model of light transport that computes the
radiance in 2D using a Fourier basis to discretise in angle. The model was validated against a 2D finite element
model of the radiative transfer equation, and was used to compute gradients of an error functional with respect
to the absorption and scattering coefficient. It was found that adjoint-based gradient calculations were much
more robust to inherent Monte Carlo noise than a finite difference approach. Furthermore, the Fourier angular
discretisation allowed very efficient gradient calculations as sums of Fourier coefficients. These advantages, along
with the high parallelisability of Monte Carlo models, makes this approach an attractive candidate as a light
model for quantitative inversion in photoacoustic imaging.

Keywords: quantitative, photoacoustics, Monte Carlo, radiance

1. INTRODUCTION

Photoacoustic imaging (PAI) is a technique that utilises nanosecond, near-infrared pulses of laser light to generate
MHz frequency acoustic waves in tissue which can then be detected at the tissue surface, thereby exploiting highly
selective optical absorption in biological tissue and the low scattering undergone by ultrasonic waves. There are
two inverse problems in PAI: the acoustic inverse problem, which describes the reconstruction of the initial
acoustic pressure distribution from boundary acoustic measurements, and the optical inverse problem, which
involves the recovery of tissue optical properties or absorber concentrations from the initial acoustic pressure. It is
the optical inverse problem, sometimes called quantitative PAI, that is of interest here. Solving it - which remains
a significant challenge - is of considerable interest as it would allow high resolution, 3D, ‘molecular imaging’: the
quantification of physiologically relevant properties such as oxygen saturation, haemoglobin concentration, or
the concentrations of other endogenous or exogenous chromophores. This paper proposes radiance Monte Carlo
as an accurate and highly scalable forward model, well suited to tackling this inverse problem.

2. QUANTITATIVE PHOTOACOUSTIC IMAGING

The inversion in quantitative PAI is not straightforward as the initial pressure distribution (the photoacoustic
image) is not proportional to the absorption coefficient but to the absorbed energy density, H, which is the
product of the absorption coefficient and the fluence:

H(x, λ) = µaΦ(µa) = Φ(x, λ; ck)
K∑
k=1

αk(λ)ck(x), (1)

where Φ is the light fluence, µa is the absorption coefficient, αk is the molar absorption coefficient for the kth

chromophore, ck is the concentration of the kth chromophore, λ is the wavelength of the light fluence, and

Send correspondence to: r.hochuli@ucl.ac.uk

Photons Plus Ultrasound: Imaging and Sensing 2015, edited by Alexander A. Oraevsky, Lihong V. Wang
Proc. of SPIE Vol. 9323, 93231P · © 2015 SPIE · CCC code: 1605-7422/15/$18

doi: 10.1117/12.2081407

Proc. of SPIE Vol. 9323  93231P-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 03/26/2015 Terms of Use: http://spiedl.org/terms



x is position (the fluence will also, in general, depend on how the light is scattered). Thus, although the
chromophore concentrations are linearly related to the absorption coefficient, the absorption coefficient is not
linearly related to the photoacoustic image, and knowledge of the fluence is required. The internal fluence is
unknown in most situations as it depends on the optical properties of the medium, making it both positionally-
and wavelength-dependent. A general approach to estimating µa or ck is to iteratively minimise the difference
between the measured photoacoustic image and the output of a forward model, for example, by solving the
nonlinear least-squares problem

µa = arg min
µa

ε(µa), ε =
1

2

∫
Ω

(Hmeas −H(µa, µs))
2
dΩ, (2)

where Hmeas is the measured image, H(µa, µs) is the simulated image at the current estimate of absorption
coefficient µa and scattering coefficient µs, and Ω is the domain. As PA images are high resolution, this is a
large scale inversion, and computationally efficient methods are required to solve it. For quasi-Newton inversion
or gradient-descent schemes, estimates of the functional gradients, ∂ε/∂µa and ∂ε/∂µs, are required. Gradient-
based schemes, such as quasi-Newton techniques, have been used to invert simulated PAT data using the radiative
transfer equation,1 and the diffusion approximation,2 as fluence models.

2.1 Models of Light Transport

For light travelling through highly scattering media such as biological tissue, solving Maxwell’s electrodynamic
equations to model the light distribution is not tractable, and an energy-based approach is usually used, sum-
marised in the time-independent case by the radiative transfer equation (RTE):

(ŝ · ∇+ µa(x) + µs(x))φ(x, ŝ)− µs(x)

∫
SN−1

Pθ(ŝ, ŝ
′)φ(x, ŝ′)dŝ′ = q(x, ŝ), (3)

where φ is the radiance, µa and µs are the absorption and scattering coefficients, respectively, x is position, ŝ′

and ŝ are the original and scattered propagation directions, Pθ(ŝ, ŝ
′) is the scattering phase function, q(x, ŝ) is a

source term and SN−1 is used to indicate integration over angle in N − 1 dimensions (N = 2 in 2D). The RTE
is often approximated in highly diffuse regions, where the radiance is not strongly dependent on angle, by the
diffusion approximation (DA) for the fluence (the angle-integrated radiance).3 This is straightforward to solve
using standard numerical approaches, but is inaccurate at regions close to the source or boundaries, which are
often of interest in PAI. On the other hand, the RTE accurately models light in both the ballistic and diffusive
regimes, but due to the domain having both spatial and angular discretisation, the memory requirements for
commonly used solution approaches, such as finite elements, grow rapidly. For example, a regular cuboid mesh
containing 100 nodes along one edge (a typical value for a PAT image) with a 32 angular bins, and ∼ 106

elements, forms a system matrix containing a maximum number of non-zero elements of ∼ 60 million which, to
single precision, requires ∼ 250GB of memory merely to store.

An alternative approach to estimating solutions to the RTE is to use a Monte Carlo (MC) simulation,4 a
stochastic model that involves propagating ‘packets’ of energy through the tissue, depositing energy along their
trajectory. As the number of photons used grows, the fluence estimate tends to a solution of the RTE. As
the individual photons do not interact, this method is highly parallelisable, which is very attractive as parallel
computing becomes increasingly mainstream. In this paper, we describe a 2D MC code that computes the
angle-dependent radiance, rather than the fluence (the essential principles are directly applicable in 3D); spatial
discretisation is performed in a piecewise constant basis, and angular discretisation in a Fourier-basis. The
advantages of Fourier discretisation are two-fold: first, it allows compact storage of the radiance and improves
convergence of radiance estimates due to the sparsity of a diffuse field in this basis. Second, it allows efficient
and straightforward computation of gradients of the error function with respect to model parameters. These
advantages are discussed in Sections 3 and 4.2.

2.2 Functional Gradient Calculation with the RTE

The adjoint approach for calculating the functional gradients ∂ε/∂µa and ∂ε/∂µs when using the RTE as the
light model is described by Saratoon et al.1 The derivatives of ε with respect to µa and µs can be expressed
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using an adjoint solution of the RTE, φ∗, which solves the equation:

(−ŝ · ∇+ µa(x) + µs(x))φ∗(x, ŝ)− µs(x)

∫
S1

Pθ(ŝ, ŝ
′)φ∗(x, ŝ′)dŝ′ = µa(Hmeas −H(µa, µs)), (4)

where S1 is used to indicate that the integral is performed over a circumference in 2D. The source term is isotropic,
so in a MC simulation photons must be launched isotropically from all positions where µa(Hmeas−H(µa, µs)) 6= 0
with their weights scaled such that

∑
pWp ∝ µa(Hmeas −H(µa, µs)), for p photons per source position. Once

the radiance φ and adjoint radiance φ∗ have been calculated, the functional gradients can be found using1

dε

dµa
= −Φ(µa, µs)(Hmeas −H(µa, µs)) +

∫
S1

φ(ŝ;µa, µs)φ
∗(ŝ;µa, µs)dŝ (5)

dε

dµs
=

∫
S1

φ(ŝ′;µa, µs)φ
∗(ŝ;µa, µs)dŝ−

∫
S1

∫
S1

φ(ŝ;µa, µs)Pθ(ŝ, ŝ
′)φ∗(ŝ;µa, µs)dŝdŝ

′. (6)

This approach has the significant benefit that only two model runs are required to compute the functional
gradients with respect to absorption and scattering; by contrast, the number of model runs required to compute
the gradient via a finite difference scheme (discussed in Section 4.3) would be greater than two times the number
of pixels in the domain.

3. MONTE CARLO MODELING OF RADIANCE

A traditional MC algorithm to simulate light transport involves launching a photon from the source at position
x in direction ŝ′ with weight W0, the photon then travels a distance dl in the current direction; at the new
position, x′ = x + ŝ′dl, some weight δW = W0(1 − exp(−µadl)) is deposited (neglecting the photon packet’s
angle of incidence), and the photon continues this process until the photon has travelled a total distance l =

∫
dl,

at which point it is scattered into the new direction ŝ, which in 2D is determined by sampling the phase function:

Pθ(ŝ · ŝ′; g) =
1

2π

1− g2

(1 + g2)− 2g(ŝ · ŝ′)
, (7)

where g is the anisotropy factor. This process is repeated until the photon weight has decayed below some
threshold value, for all Np photons. As Np →∞, the quantity being simulated tends to a solution of the RTE.
The details of absorption and scattering in MC are discussed by Sassaroli5 who provides a clear derivation of
different, equivalent methods, as well as Wang and Jacques.4

In order to simulate the angularly-dependent radiance, the deposition of weight must not only occur at a
certain position x′, it must also be deposited in a direction ŝ′. Spatial discretisation can be achieved through a
voxelised grid or a mesh, while perhaps the most intuitive angular discretisation is to separate the unit circle into
segments, the ‘discrete ordinate’ method. When light first enters the tissue it shows strong directional coherence,
but after a scattering mean-free-path into the tissue, it becomes directionally decorrelated, i.e. diffuse. Thus,
near the source, in the discrete ordinate method, a large number of angular bins are required to accurately
simulate ballistic propagation, and far from the source, due to near-isotropic light propagation, the radiance is
dense in this basis. Memory requirements can therefore become significant – GB in size in 3D – for a mesh or grid
with both high spatial and high angular discretisation. While this does not exceed what is typically available on
CPUs nowadays, given that MC routines are most efficiently run on GPUs, we wish to store this in the GPU
memory, which is limited to 12GB on leading devices.

Instead, a Fourier description may be more appropriate as only few orders (1-2) would be required for diffuse
propagation, while ballistic propagation would require higher orders, compared with an order of magnitude more
terms being required using traditional angular discretisation. In this approach, the radiance is expressed as a
Fourier series,

φ(x, θ′) =
1

2
a0(x) +

N=∞∑
n=1

an(x) cos(nθ′) +
N=∞∑
n=1

bn(x) sin(nθ′), (8)
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where a0 is the weight deposited in the zeroth harmonic, representing isotropic light propagation, and the higher
orders, an and bn, are the Fourier coefficients, scaled by the weight deposited:

a0 = δW
π

∫ π
−π δ(θ − θ

′)dθ = δW
π (9)

an = δW
π

∫ π
−π δ(θ − θ

′) cos(nθ)dθ = δW
π cos(nθ′) (10)

bn = δW
π

∫ π
−π δ(θ − θ

′) sin(nθ)dθ = δW
π sin(nθ′), (11)

where δW is the weight deposited by the photon and θ′ is the direction of propagation of the photon. A flowchart
of the code is shown in Figure 1.

Launch photon (x, ŝ′)

Sample step length l = U [0, 1]/µt

Step photon distance dl

Cross boundary? Terminate photon

Scale weight by reflection coefficient

Update step length l← l − dl

Scale step length by µt = µa + µs at new position

Deposit weight into Fourier harmonic δW = W (1− exp(−µadl))

W ≥WT ? Terminate photon

l < dl?Scatter into new direction

z

x

yes

no

yes

Figure 1. Flowchart of RMC algorithm with index mismatch on x-boundaries and index-matched z-boundaries.
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The photon weight deposition scheme described above relating to Eq. (9) can be visualised by placing an
isotropic point source at the centre of a 4mm×4mm domain with 0.1mm pixel size and up to second order
Fourier harmonics. Figure 2 demonstrates an and bn for n ∈ [0, 2]. The zeroth-order term, a0, is proportional
to the fluence and represents isotropic light propagation, while the higher order terms in the series represent the
directional propagation of light, as is evident from Figure 2.
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Figure 2. Fourier harmonics an (left column) and bn (right column), for n ∈ [0, 2], simulated using MC model with 106

photons in 4mm×4mm domain and isotropic point source at centre. Images normalised by maximum value of a0.

3.1 Validation of 2D RMC

Light transport in 2D is fundamentally different to that in 3D due to a difference in phase function; a solution to
the RTE in 2D cannot be obtained by integrating a 3D solution along one spatial axis. There are many available
3D models of light transport in turbid media such as diffusion models6 and MC models,4,7 but there is a lack
of 2D models of light transport against which 2D MC models can be compared. In this section, we compare the
accuracy of the 2D RMC algorithm against a 2D finite element (FE) model of the RTE.8

The domain simulated was 5mm×5mm in size and 0.1mm isotropic voxels and was illuminated using an
isotropic source at the centre of the x-direction at z=0mm. The medium properties were homogeneously dis-
tributed with µa=0.01mm-1, µs=10mm-1 and g=0.5. The MC model used 10mm7 photons and 12 Fourier orders,
while the RTE simulation consisted of 64 angular bins. Figure 3 contains plots of the radiance as a function of
angle at two positions in the domain: x=0mm (along beam axis), z=0.6mm and x=-1mm, z=0.5mm.
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Figure 3. Comparison of radiance as a function of angle in 5mm×5mm domain with 0.1mm isotropic voxel size, illuminated
by an isotropic point source on the boundary at x=0mm (centre of edge), z=0mm. RTE simulation has 64 angles and
RMC had 12 Fourier orders used to compute radiance in 64 angles. Two positions considered: x=0mm (along beam axis),
z=0.6mm (left) and x=-1mm, z=0.5mm (right). Radiance values normalised by maximum value.

It can be observed that the light maintains some of its forward-directionality at a distance of 0.6mm from the
source along the beam axis, while off-axis, at x=-1mm, z=0.5mm, the radiance is orientated predominantly at
approximately -1.5 radians. Very good agreement is obtained between the MC code and the RTE simulations.
It is anticipated that remaining discrepancies would be eliminated with finer spatial and angular discretisation.

4. GRADIENT CALCULATION USING RMC

4.1 Simulating the adjoint radiance

As the source term in the adjoint model is µa(Hmeas−H(µa, µs)), and this is expressed on a piece-wise constant
(voxelised) grid, a brief discussion of how this is implemented is necessary. This source term is isotropic,
meaning the source must be distributed homogeneously over each pixel/voxel as well as emit photons in an
isotropic manner. To reduce the computational load, sources whose strength was 10-5× less than the maximum
value of µa(Hmeas−H) were neglected. The spatial distribution was implemented by spreading source positions
uniformly randomly over a source voxel; given the corner of a voxel xc, a uniform random variable, scaled by the
voxel size, dx, was added to this: xc + U [0, 1]dx. The angular distribution was achieved by sampling a uniform
random variable over the unit circle: U [0, 2π].

4.2 Gradient computation in Fourier domain

Writing the radiance as in Eq. (8) and the adjoint radiance in a similar fashion, but with Fourier coefficients a∗0,
a∗m and b∗m, and computing the integral term in Eq. (5), we obtain

∫
S1

φ(ŝ;µa, µs)φ
∗(ŝ;µa, µs)dŝ =

∫
2π

[
1

4
a0a
∗
0 +

1

2
a0

∑
m

a∗m cos(mθ′) +
1

2
a0

∑
m

a∗m sin(mθ′)

+
1

2
a∗0

∑
n

an cos(nθ′) +
∑
n

∑
m

ana
∗
m cos(nθ′) cos(mθ′) +

∑
n

∑
m

anb
∗
mcos(nθ

′) sin(mθ′)

+
1

2
a∗0

∑
n

bm cos(mθ′) +
∑
n

∑
m

a∗mbn sin(nθ′)cos(mθ′) +
∑
n

∑
m

bnb
∗
m sin(nθ′) sin(mθ′)

]
dθ′. (12)

Using orthogonality, Eq. (12) reduces to

∫
S1

φ(ŝ;µa, µs)φ
∗(ŝ;µa, µs)dŝ =

∫
2π

[
1

4
a0a
∗
0 +

∑
n

ana
∗
n cos2(nθ′) +

∑
n

bnb
∗
n sin2(nθ′)

]
dθ′, (13)
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which is simply ∫
S1

φ(ŝ;µa, µs)φ
∗(ŝ;µa, µs)dŝ =

π

2
a0a
∗
0 + π

∑
n

ana
∗
n + π

∑
n

bnb
∗
n. (14)

This closed form expression of the second term in Eq. (5) is computationally straightforward due to the fact
that we are simply summing over products of Fourier coefficients already loaded in memory, meaning numerical
integration is not necessary.

A similar approach can be applied to the scattering gradient of Eq. (6). We already have an expression for
the convolution of the forward and adjoint radiance fields, given in Eq. (14), which is the first term in Eq. (6).
The second term includes the phase function which, if we choose the 2D analogue to the Henyey-Greenstein
phase function,9 has the useful property that it can be expanded as a Fourier series in powers of g, shown in Eq.
(15).10

Pθ(ŝ · ŝ′; g) =
1

2π
+

1

π

∞∑
l=1

gl cos(l∆θ), (15)

where ∆θ = arccos(ŝ · ŝ′). Thus we can write,∫
S1

∫
S1

φ(ŝ′;µa, µs)Pθ(ŝ, ŝ
′)φ∗(ŝ;µa, µs)dŝdŝ

′ =

∫
S1

∫
S1

[
1

2
a0 +

∑
n

an cos(nθ′) +
∑
n

bn sin(nθ′)

]
[

1

2π
+

1

π

∑
l

gl cos(l(θ − θ′))

]
[

1

2
a∗0 +

∑
m

a∗m cos(mθ) +
∑
m

b∗m sin(mθ)

]
dθdθ′, (16)

where we let θ and θ′ be the angles between the z-axis and ŝ and ŝ′, respectively; as such, the scattering angle
between the previous direction ŝ′ into the new direction ŝ is given by (θ − θ′).

It is possible to expand cos(l(θ − θ′)) as cos(lθ) cos(lθ′) + sin(lθ) sin(lθ′) which in turn allows us to employ
orthogonality relationships to simplify the above integrals and write

∫
S1

∫
S1

φ(ŝ′;µa, µs)Pθ(ŝ, ŝ
′)φ∗(ŝ;µa, µs)dŝdŝ

′ =
π

2
a0a
∗
0 + π

∑
n

ana
∗
ng
n + π

∑
n

bnb
∗
ng
n, (17)

Substituting this expression into Eq. (6), we can write the full expressions for the functional gradients with
respect to the absorption and scattering coefficients:

dε

dµa
= −Φ(µa, µs)(Hmeas −H(µa, µs)) +

π

2
a0a
∗
0 + π

∑
n

ana
∗
n + π

∑
n

bnb
∗
n (18)

dε

dµs
= π

∑
n=1

[ana
∗
n + bnb

∗
n] (1− gn). (19)
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4.3 Comparison with finite difference gradient calculation

In order to determine the accuracy of the adjoint-assisted gradient calculation, we can compare the gradients
against those computed using a finite difference approach. We can define a forward difference for the absorption
and scattering gradients at a pixel position i as

dε

dµia
=
ε(µia + δµa, µs)− ε(µia, µs)

δµa
(20)

dε

dµis
=
ε(µa, µ

i
s + δµs)− ε(µa, µis)

δµs
, (21)

where δµa or δµs is a perturbation of the relevant parameter. A typical approach to determine a suitable
perturbation magnitude is to calculate the functional gradient and iteratively reduce the perturbation size until
the gradient converges. However, quantities computed with MC simulations will always exhibit some variance or
uncertainty and low-noise estimates of functional gradients using MC simulations requires an impractical number
of photons to be simulated. Thus, the functional gradient will not converge beyond some value due to noise in
the forward model.

‘Measured’ data was first simulated by running the forward model using 107 photons in a domain 4mm×4mm
with 0.1mm isotropic voxels using the true absorption and scattering, shown in Fig. 4 and 5, with g=0.9
homogeneously distributed. The illumination was collimated in the +z direction and positioned at x=0mm,
z=0mm. Using this data, functional gradients with respect to absorption and scattering were computed; for the
gradient with respect to absorption, the current parameter estimates were the background value for absorption,
µbga , and the true value for scattering, µtrues . For scattering it was the opposite: the current parameter estimates
were the background value for scattering, µbgs , and the true value for absorption, µtruea .

The finite difference calculations, shown in Eq. (20) and (21), were performed using MC simulations using
107 photons, with a perturbation sizes δµa = µbga /2 and δµs = µbgs /2. The finite difference calculation was run
for a line along x=-1.1mm (indicated by the dashed white line in Fig. 4 and 5). The adjoint simulations were
also run with 107 photons and used three Fourier orders for angular discretisation and gradients were computed
according to Eq. (18) and (19).
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Figure 4. Image of µ

true

a in mm

-1

with white dashed line used to indicate pixels i at which gradients were computed (left);
Plots of functional gradient with respect to absorption computed using adjoint-assisted (Adjoint) and finite difference
(FD) methods along line parallel to z-axis at x=-1.1mm. Gradients normalised to unity.
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Figure 5. Image of µtrue
s in mm-1 with white dashed line used to indicate pixels i at which gradients were computed (left);

Plots of functional gradient with respect to scattering computed using adjoint-assisted (Adjoint) and finite difference (FD)
methods along line parallel to z-axis at x=-1.1mm. Gradients normalised to unity.

Despite the variance in the finite difference estimate, it can be seen from Fig. 4 and 5 that there is good
agreement between the functional gradients computed using the two different methods. It is clear that variance
in the forward simulation is propagated and amplified using the finite difference calculation, whereas it is much
less apparent in the adjoint-assisted gradients.

5. CONCLUSIONS

A 2D Monte Carlo (MC) model for computing angle-dependent radiance in scattering media was proposed. It
used a Fourier basis for angular discretisation which facilitated compact storage of diffuse radiance fields. This,
along with the inherent parallelisability of MC models, makes it an attractive candidate for diffuse optical inverse
problems. In particular, it was shown that through the use of an adjoint model, the functional gradients required
for quantitative photoacoustic imaging could be calculated much more accurately and efficiently than with a
finite-difference approach. This radiance MC approach can be straightforwardly extended to 3D, where the
discretisation over angle can be performed using a spherical harmonic basis. It therefore holds great potential as
a forward model in gradient-based approaches to the quantitiative photoacoustic imaging problem of quantifying
chromophore concentrations from 3D photoacoustic images.
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