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ABSTRACT 

Laser-Scanning-Optical-Resolution Photoacoustic Microscopy (LSOR-PAM) requires an ultrasound detector 
with a low noise equivalent pressure (NEP) and a large angular detection aperture in order to image a large field 
of  view (FOV). It is however challenging to meet these requirements when using piezoelectric receivers since 
using a small sensing element size (<100µm) in order to achieve a large angular detection aperture will 
inevitability reduce the sensitivity of the detector as it scales with decreasing element size. Fibre optic 
ultrasound sensors based on a Fabry Perot cavity do not suffer from this limitation and can provide high 
detection sensitivity (NEP<0.1kPa over a 20 MHz measurement bandwidth) with a large angular detection 
aperture due to their small active element size (~10µm). A LSOR-PAM system was developed and combined 
with this type of fibre optic ultrasound sensor. A set of phantom studies were undertaken. The first study 
demonstrated that a high resolution image over a large field of view (Ø11mm) could be obtained with a sample-
detector separation of only 1.6mm. In the second study, a 12µm diameter tube filled with methylene blue whose 
absorption coefficient was similar to that of blood was visualised demonstrating that the fibre optic sensor could 
provide sufficient SNR for in-vivo microvascular OR-PAM imaging. These preliminary results suggest that the 
fibre optic sensor has the potential to outperform piezoelectric detectors for Laser-Scanning Optical Resolution 
Photoacoustic Microscopy (LSOR-PAM).   
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1. INTRODUCTION 

Optical Resolution Photoacoustic Microscopy (ORPAM) can provide images of superficial microvasculature 
and other structures with micron scale lateral resolution. Early implementations relied upon mechanically 
scanning both the focused excitation laser beam and the ultrasound detector over the tissue sample1. In order to 
reduce acquisition time an alternative method has since been reported and is referred to as Laser-Scanning-
Optical-Resolution Photoacoustic Microscopy (LSOR-PAM)2. This method uses an x–y galvanometer scanner 
to optically scan the focused excitation beam while detecting the generated photoacoustic signals with a single 
stationary planar detector offset from the scan area.  

LSOR-PAM was first implemented using planar piezoelectric detectors2,3. A drawback of these detectors is that, 
in order to achieve acceptable sensitivity, a relatively large element size (>100µm) is required. However this 
results in a limited angular detection aperture, requiring the detector to be placed a significant distance (>1cm) 
from the sample in order to achieve an acceptable field-of-view (>Ø5mm). As a consequence, SNR can be 
compromised due to acoustic attenuation arising from the geometrical spreading of the wavefront and, to a 
lesser extent, acoustic absorption. For example, figure 1 (a) shows the directional response of an ideal 400µm 
diameter circular detector which is comparable to the element sizes previously used for LSOR-PAM2–5. The 
acceptance angle of the detector is ±15 degrees or less for frequencies above 10MHz. Simple geometry dictates 
that if the detector is orientated at a 45 degree angle and an area of 1cm in diameter is to be imaged (see figure 
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5. TISSUE MIMICKING PHANTOM 

The leaf skeleton and carbon fibres described in the previous section provide complex micron scale structures 
that are useful for assessing the potential of the system to provide high resolution images of absorbing 
anatomical structures such as the microvasculature over a large field of view. However, they are not 
physiologically realistic in the sense they are likely to be more strongly absorbing than biological chromophores 
such as haemoglobin. To determine whether the system SNR is sufficient for imaging microvessels (an 
important OR-PAM application), a more realistic absorber, a 12µm diameter tube (PMMA) filled with 
methylene blue (µa=186cm-1 at λ=580nm) and immersed in water was imaged. This absorption coefficient is 
similar to that of blood at 580nm and the tube diameter is comparable to that of an individual capillary. The 
imaged area was 300 by 300 µm with step increments of 2 µm. The pulse energy at the focal spot was 100nJ and 
each detected photoacoustic signal was signal-averaged 4 times. The photoacoustic image obtained is shown in 
figure 6. This suggests that the system SNR is sufficient to visualise the microvasculature at the level of an 
individual capillary.  

 

Figure 6: Photoacoustic image of a 12µm diameter tube filled with Methylene blue (µa=186cm-1 at λ=580nm). 

 

6. CONCLUSION 
 

These preliminary results suggest that the fibre optic sensor used in this study could be a viable alternative to 
piezoelectric detectors for LSOR-PAM implementations. The large acceptance angle of the sensor allows it to 
be placed in close proximity to the sample, without compromising the field-of-view. As well as minimising 
acoustic attenuation this may be advantageous for applications in which a large sample-detector path length is 
undesirable. Although this study has demonstrated a free-space LSOR-PAM implementation, the small physical 
size of the fibre optic sensor and its low directional sensitivity suggests it may be useful for endoscopic fibre-
optic OR-PAM implementations. 
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