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ABSTRACT  

We present novel concave Fabry Perot (FP) sensor arrays for photoacoustic imaging which were fabricated using a high-
precision inkjet printing approach to produce the cavity and employed physical vapor deposition to form the dielectric 
mirrors. Our concave FP cavity design provides excellent beam confinement within the cavity enabling high finesse and 
thus high sensitivity to be achieved. Two such concave sensors are evaluated in terms of their sensitivity and acoustic 
bandwidth. A 66 µm thick concave sensor is shown to provide a noise equivalent pressure (NEP) of 85 Pa and an 
acoustic bandwidth of 16 MHz, and can potentially be used as a sensitive broadband sensor for superficial imaging. A 
250 µm thick sensor with an NEP of 12 Pa and acoustic bandwidth of 4 MHz was also developed for deep tissue imaging 
applications. 
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1. INTRODUCTION  
Photoacoustic imaging is a non-invasive biomedical imaging modality based on the detection of laser induced ultrasound 
waves[1]. As a hybrid modality, it takes advantage of the high-contrast and spectroscopic-based specificity of optical 
imaging and the high spatial resolution of ultrasound imaging. Planar Fabry Perot (FP) ultrasound sensing etalons have 
proved to be extremely effective for superficial (< 1 cm) photoacoustic imaging applications [2 – 5]. To achieve the 
acoustically small element sizes (~ tens of microns) required for high resolution tomographic imaging, the etalon is 
typically illuminated with a focused laser beam. However, the divergence of the beam causes beam walk-off, 
fundamentally limiting the etalon finesse and thus the sensor sensitivity. In essence, the problem is one of insufficient 
optical confinement and as a consequence, it has proved challenging to achieve imaging penetration depths greater than 
approximately 10 mm with planar FP ultrasound sensors. In this paper, we present a novel concave sensor design on 
planar substrate following previous work on fiber optic endoscopic probes [6], the geometry of which matches the 
wavefront of the interrogation laser beam. Due to the much stronger optical confinement provided by this approach, a 
significantly higher finesse yielding a sensitivity that significantly exceeds that of the most sensitive planar FP sensor is 
achievable.  
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2. OVERVIEW OF FP ULTRASOUND SENSOR 
2.1 Transduction mechanism 

 

 
(a) (b) 

Figure 1. (a) Schematic of an existing planar FP sensor. (b) Interferometer transfer function showing reflected optical power 
as a function of optical phase. The operation at optimum phase bias point ߶ for the linear detection of a small acoustically 
induced phase modulation ݀߶ is illustrated. 

 

A schematic of an existing planar FP sensor is shown in Figure 1 (a) [3]. It consists of a thin (݈ = 20 – 60 μm) polymer 
spacer sandwiched between a pair of dichroic mirrors, forming a FP cavity, which is bonded to a transparent backing. An 
interrogation laser beam is incident on the sensor head and is multiply reflected between the two mirrors before exiting 
the cavity. An incident acoustic wave modulates the thickness of the polymer spacer, producing an optical phase shift of 
the light reflected from the two mirrors and resulting in a corresponding modulation of the reflected optical power of the 
interrogation laser beam. The variation in the reflected optical power from a FP sensor as a function of optical phase 
shift ߶ is defined as the phase interferometer transfer function (ITF) where ߶ is given by: 

 ߶ ൌ ߣ݈݊ߨ4 ,                   (1) 

where ݊ and ݈ are the refractive index and thickness of the polymer spacer respectively, and ߣ is the wavelength of the 
interrogation laser beam. An example of the ITF is shown in Figure 1 (b). In order to make an acoustic measurement, the 
laser wavelength is adjusted to the optimal phase bias point ߶ that corresponds to the maximum slope of the ITF. Under 
this condition, maximal sensitivity can be achieved, and the FP sensor is said to be optimally biased [3]. If the 
acoustically induced phase shift ݀߶ is small, it can be assumed to be linearly converted to a corresponding change in the 
reflected optical power,	݀ ோܲ.  

2.2 Sensitivity 

The sensitivity of the FP sensor is defined as the change in reflected optical power per unit change of acoustic pressure. 
It can be divided into two parts – the acoustic phase sensitivity and the optical sensitivity [7].  

The acoustic phase sensitivity represents the magnitude of the optical phase shift produced per unit acoustic pressure. It 
is a measure of acoustically-induced change in the optical thickness of the polymer spacer, resulting from change in both 
physical thickness and refractive index, and can be written as [7]: 

ௌܣ  ൌ ݀߶݀ ൌ ߣߨ4 ൬݊ ݈݀݀  ݈ ൰݀݊݀ ூܲሺ݇ሻ ,                   (2) 

where  is the acoustic pressure, ݊, ݈ and ߣ are the same as defined in Equation (1), ݈݀ and ݀݊ are a small change in the 
spacer thickness and a small change in the refractive index, respectively, ݇ ൌ ߨ2 ⁄ߣ  is the acoustic wavenumber, with ߣ being the acoustic wavelength. ூܲሺ݇ሻ is a frequency-dependent modifying term that accounts for the spatial variation 
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of stress within the spacer that occurs when an acoustic wave is incident on the sensor [2]. In the low frequency limit 
where ߣ ≫ ݈, and under the assumption that the acoustic impedance mismatch between the spacer and the surrounding 
fluid is small, ூܲሺ݇ሻ is dominated by the acoustic properties of the backing material. For the polymer spacer used in the 
sensors described in this study, the elasto-optic effect can be neglected. Equation (2) can therefore be written as [7]: 

ௌܣ  ൌ ݀߶݀ ൌ ߣ݊ߨ4 ܧ݈ ூܲሺ݇ሻ ,                   (3) 

where ܧ is the Young’s modulus of the spacer. As can be seen from Equation (3), the acoustic phase sensitivity scales 
linearly with the thickness of the spacer, albeit with a commensurate reduction in acoustic bandwidth which scales 
inversely with thickness [2, 8].  

The optical sensitivity describes the optical power modulation per unit phase shift at the phase bias point and is defined 
as [7]:  

ௌܫ  ൌ ݀ ோܲ݀ , (4) 

which is the first derivative of the ITF at the phase bias point. In general, ܫௌ increases as the finesse and fringe visibility 
increase.  

The overall detection sensitivity, ܵ, is the product of the acoustic phase sensitivity and the optical sensitivity.  

 

3. CONCAVE FP SENSOR 
 
3.1 Sensitivity enhancement over planar FP sensor 

 

  

(a) (b) 

Figure 2. Schmatics of the beam progation within (a) a planar FP cavity and (b) a concave cavity whose geometry matches 
the wavefront of the incident laser beam. 

 

A three-dimensional imaging system based on a planar FP ultrasound sensor was previously developed by Zhang et al. 
[3]. In their system, a focused laser beam was used to interrogate the sensor in order to minimize the effective acoustic 
element size. However, due to the mismatch between the wavefront of the divergent beam and the planar mirrors, phase 
dispersion and beam walk-off was significant after several round trips within the FP cavity, as illustrated in Figure 2 (a). 
This degrades the finesse and fringe visibility and therefore the optical sensitivity of the FP sensor. The deterioration of 
the optical sensitivity is even more significant for thick planar sensors thus limiting the maximum thickness to 
approximately 50 μm for beam radii of a few tens of microns. In both cases, improved beam confinement within the 
cavity is needed. This can be achieved by using a planar-concave cavity configuration.  
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A focused single mode interrogation laser beam can be approximated by a propagating Gaussian beam, with its 
wavefront curvature at a distance of ݖ from the minimum beam waist given by [9]: 

 ܴሺݖሻ ൌ ݖ 1  ቆ߱ߨଶݖߣ ቇଶ൩ ,                   (5) 

where ߱ is the minimum beam waist and ߣ is the wavelength. The best beam confinement can be achieved by matching 
the curvature of the cavity mirrors with the wavefront of the Gaussian beam. In the planar-concave configuration, the 
planar mirror is located at the minimum beam waist, where the wavefront curvature is infinite. The concave mirror has a 
radius of curvature that matches the wavefront curvature at a location ݈ given by Equation (5), with ݈ being the cavity 
length, as shown in Figure 2 (b). Theoretically, under this condition, the beam can exactly replicate itself after each 
reflection from the cavity mirrors offering the prospect of achieving higher finesse and fringe visibility than possible 
with a planar FP sensor. 

    
(a) (b) 

Figure 3. (a) Simulated ITFs of a planar sensor of thickness 50 μm, with incident beam waist of 25 μm, for mirror 
reflectivity of 98% (Finesse = 44, visibility = 0.2), 99% (Finesse = 56, visibility = 0.11), and 99.9% (Finesse = 110, 
visibility = 0.01), respectively. (b) Simulated ITFs of a concave sensor of thickness 50 μm, with incident beam waist of 25 
μm, for mirror reflectivity of 98% (Finesse = 145, visibility = 0.9) and 99.9% (Finesse = 2970, visibility = 0.93), 
respectively. 

 

To compare the optical sensitivity of the planar and concave sensors, the ITFs of two sensors with the same thickness (݈ 
= 50 μm) and incident beam waist (߱ = 25 μm) and a few values of mirror reflectivity, ܴ, were simulated using a 
numerical model based on the tracing of Gaussian beam propagation within a planar or a concave FP cavity, and the 
results are shown in Figure 3 (a) and (b). For a planar sensor with ܴ = 98%, the finesse and fringe visibility are equal to 
44 and 0.2, respectively, while the concave sensor with the same ܴ has finesse and visibility of 145 and 0.9, respectively. 
One should therefore expect at least a threefold increase of optical sensitivity when using the concave sensor. In 
principle, the finesse of the planar cavity can be increased by using mirrors with higher reflectivity. However, as shown 
in Figure 3 (a), this results in a rapid decrease in visibility. As ܴ increases from 98% to 99% and then to 99.9%, the 
finesse increases from 44 to 56 and then to 110, but the visibility decreases from 0.2 to 0.11 and then to 0.01 at the same 
time. In contrast, for the concave sensor, increasing the mirror reflectivity increases the finesse, without sacrificing the 
visibility, as shown in Figure 3 (b).  
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(a) (b) 

Figure 4. (a) Simulated ITF of a planar sensor of thickness 250 μm, with incident beam waist of 25 μm and mirror 
reflectivity of 98% (Finesse = 13, visibility = 0.05). (b) Simulated ITF of a concave sensor of thickness 250 μm, with 
incident beam waist of 25 μm and mirror reflectivity of 98% (Finesse = 152, visibility = 0.95).  

 

As discussed in Section 2.2, the detection sensitivity comprises both the optical sensitivity and the acoustic phase 
sensitivity. In principle, further increase of overall sensitivity can be achieved by using a thicker sensor if the same 
optical sensitivity is maintained. Of course an increase in sensor thickness is always accompanied by reduced detection 
bandwidth. However, this reduced bandwidth can sometimes be tolerated in deep tissue imaging applications such as 
clinical breast imaging [10 – 12], where frequency-dependent acoustic attenuation by the tissue results in the high 
frequency components of the acoustic wave being preferentially attenuated. 

Increasing the thickness of a planar FP sensor without compromising the finesse and visibility can be challenging due to 
significant phase dispersion and beam walk-off. On the other hand, a carefully designed concave sensor can still offer 
good optical sensitivity owing to better beam confinement. Figure 4 (a) and (b) illustrate this by comparing the simulated 
ITFs of a planar sensor and a concave sensor with the same thickness of 250 μm, respectively. For ܴ = 98% and ߱ = 25 
μm, the finesse is only 13 for the planar sensor, while it is as high as 152 for the concave sensor. The visibility of the 
concave sensor is also much better than its planar counterpart.  

 

3.2 Fabrication method 

 

 
(a) (b) 

Figure 5. (a) Schematic and (b) photograph of a concave sensor head. 
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A schematic and a photo of a concave sensor head are shown in Figure 5 (a) and (b), respectively. The first dichroic 
mirror is deposited onto a wedged polymethylmethacrylate (PMMA) backing stub by sputtering a stack of alternate ߣ 4⁄  
thick layers of ZnS and Na3AlF6. The nominal reflectivity of the mirror is 98%. On top of the dielectric coating are the 
domes made of a UV curable optical adhesive (Norland 81) of refractive index ݊ = 1.56, fabricated using an inkjet 
printing method. This allows automatic printing of dome arrays with a wide range of geometries and sub-picoliter 
volume accuracy. After being fully cured by a UV lamp, a second dichroic mirror coating of an identical design to the 
first is deposited onto the formed domes. Finally, a 2 – 10 μm thick Parylene C barrier coating is deposited over the 
entire structure to protect the external dichroic mirror from damage due to abrasion or water ingress. Using this 
fabrication method, domes with height in the range of 40 – 400 µm and diameter in the range of 50 – 2000 µm have been 
made.  

 

4. SENSOR CHARACTERIZATION  
 
4.1 Experimental setup 

 
Figure 6. Schematic of the sensor characterization setup. 

 

A schematic of the experimental setup used for sensor characterization is shown in Figure 6. The interrogation laser 
source is an external cavity laser, which can be tuned over the wavelength range of 1510 – 1600 nm. The collimated 
output beam of the laser is steered by a pair of high-speed precision galvanometer mirrors in both x and y directions. The 
FP sensor head is situated in the focal plane of the scan lens. The beam waist at the focus is approximately 10 μm. For 
each concave sensor under investigation, the sensor is optimally biased by tuning the interrogation laser wavelength to 
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the point of maximum slope on the ITF to achieve the highest optical sensitivity. Planar PZT transducers with different 
bandwidths depending on the specific applications are used to generate acoustic waves propagating towards the sensor. 
The beam reflected from the sensor is then directed onto a photodiode and measured by a digital sampling oscilloscope. 
The entire system is fully automated with the interrogation laser, the galvanometer, and the data acquisition hardware all 
controlled by a PC.  

4.2 Results and discussion 

The performance of two types of concave sensor has been assessed in terms of ITF, noise-equivalent-pressure (NEP) and 
frequency response. The ITF is measured by scanning the wavelength of the interrogation laser across the free spectral 
range (FSR) and recording the normalized reflectivity. The NEP is defined as the acoustic pressure that provides a 
system signal-to-noise ratio (SNR) of unity in the low frequency limit where the acoustic wavelength is much larger than 
the sensor thickness. The NEP thus represents the minimum acoustic pressure that can be detected by the system and is 
given by [3]: 

 NEP ൌ ܰܵ , (6) 

where ܵ is the sensor sensitivity and is defined as the reflected optical power modulation per unit acoustic pressure, and ܰ is the minimum detectable optical power over a specified measurement bandwidth. 

In practice, ܵ is determined by measuring the output voltage of the photodiode in response to an acoustic signal of 
known amplitude produced by a pre-calibrated pulsed 3.5 MHz planar PZT transducer. ܰ is taken as three times the 
standard deviation of the noise voltage in order to estimate the peak value. The measurement bandwidth was 20 MHz.  

To measure the frequency response, a broadband acoustic pulse generated by a 20 MHz planar transducer was detected 
first with a 25 μm thick planar FP sensor of known frequency response characteristics that acted as a reference sensor 
and then by the concave sensors. The time-domain waveforms were then Fourier transformed and the frequency 
response of the concave sensor was obtained by dividing the acoustic spectrum of the sensor under test by that of the 
reference sensor [3]. 

(a) (d) 
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(b) (e) 

  

(c) (f) 

Figure 7. (a) ITF, (b) time-domain waveform, and (c) frequency response of a concave sensor of thickness 66 μm and 
diameter 420 μm. Finesse = 218, visibility = 0.76, NEP = 85 Pa (measurement bandwidth = 20 MHz), ݂ି ଷௗ = 16 MHz. (d) 
ITF, (e) time-domain waveform, and (f) frequency response of a planar sensor of thickness 56 μm. Finesse = 60, visibility = 
0.35, NEP = 370 Pa (measurement bandwidth = 20 MHz), ݂ି ଷௗ = 18 MHz. The simulated acoustic frequency responses 
were obtained using the model described in reference 2. 

 

Figure 7 (a) – (c) shows the ITF, the time-domain waveform and the frequency response of a concave sensor of thickness 
66 μm and diameter 420 μm. As a comparison, the results for a planar sensor of similar thickness (56 μm) and thus 
similar bandwidth are also shown in Figure 7 (d) – (f). Note that the secondary reflectivity minima in Figure 7 (a) are 
due to a slight mismatch of the beam wavefront and the mirror curvature, resulting in excitation of an additional 
transverse mode. Very narrow resonance peaks have been observed for the concave sensor, corresponding to a finesse as 
high as 218, which is more than three times the value of the planar sensor (finesse = 60). The visibility of the concave 
sensor is also much better than the planar one. The NEP of the concave sensor is 85 Pa, compared to 370 Pa for the 
planar sensor. In both cases the measurement bandwidth was 20 MHz. The increased sensitivity of the concave sensor 
can be readily observed by comparing the SNR in the time-domain waveforms to that of the planar sensor, as shown in 
Figure 7 (b) and (e). With a -3dB bandwidth of approximately 16 MHz, this concave sensor can be potentially used as a 
sensitive broadband sensor.  
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(c)  

Figure 8. (a) ITF, (b) time-domain waveform, and (c) frequency response of a concave sensor of thickness 250 μm and 
diameter 1100 μm. Finesse = 168, visibility = 0.86, NEP = 85 Pa (measurement bandwidth = 12 MHz), ݂ି ଷௗ = 4 MHz. The 
simulated acoustic frequency responses were obtained using the model described in reference 2. 

 

As discussed earlier, thick sensors might be needed for deep tissue imaging, where high sensitivity is required for the 
detection of weak acoustic signals, and narrow bandwidths can be tolerated [8, 11&12]. Here a 250 μm thick concave 
sensor with diameter of 1100 μm has been made and investigated. The results are shown in Figure 8 (a) – (c). As can be 
seen from the ITF in Figure 8 (a), high finesse (168) and good visibility (0.86) are maintained, despite the thickness of 
the sensor. The excellent optical sensitivity together with extra gain in acoustic phase sensitivity from increased sensor 
thickness makes this sensor extremely sensitive, as evidenced by the high SNR in the waveform shown in Figure 8 (b). 
The NEP is as low as 12 Pa within a 20 MHz bandwidth region, which is reduced by nearly 30 times from that of the 56 
μm planar sensor discussed above. The -3dB bandwidth of this concave sensor is approximately 4 MHz, making it 
potentially suitable for imaging tissue to depths of several cm.  
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5. CONCLUSIONS 
This work has shown that highly sensitive acoustic sensors can be achieved with the use of a concave FP cavity 
geometry. If the radii of curvature of the cavity mirrors match the wavefront of the interrogation laser beam, good beam 
confinement within the cavity can be achieved, resulting in significant sensitivity enhancement compared with the 
previously used planar FP sensor. An automated fabrication method has been used to make concave sensor arrays with 
high precision. The performance of two typical concave sensors has been investigated. The 66 μm thick sensor with a -
3dB bandwidth of 16 MHz and NEP of 85 Pa (over a 20 MHz measurement bandwidth) can potentially be used as a 
sensitive broadband sensor. The 250 μm thick sensor with a -3 dB bandwidth of 4 MHz and NEP of 12 Pa (over a 20 
MHz measurement bandwidth) could serve as an ultra-sensitive detector for clinical breast imaging and other deep tissue 
imaging applications.  
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