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ABSTRACT

Quantitative photoacoustic tomography (QPAT) aims to recover the optical absorption and scattering properties
of a tissue region from a given photoacoustic image. Since a photoacoustic image is proportional to the product of
the absorption coefficient and the absorption-dependent light fluence, recovering these properties is a nonlinear,
ill-posed inverse problem. The problem is typically large-scale, since we are generally interested in 3D images
which possess high spatial resolution. It has previously been shown that a minimisation-based scheme can be
used to succesfully recover the optical coefficients from 2D simulated photoacoustic images. This type of inversion
seeks to adjust the desired model parameters until the difference between the measured and modelled data is
minimised. Modelling a photoacoustic image requires a model of light transport in biological tissue, such as the
radiative transfer equation (RTE) or the diffusion approximation (DA) to the RTE. The RTE is an accurate
model of light transport, but its complexity means that it will require significant computational effort when
solving such a large-scale problem using a minimisation-based inversion. The DA is a much more efficient model,
however, since the DA breaks down at regions close to light sources it is not sufficiently accurate for QPAT. Here,
we propose the use of the δ-Eddington approximation as a model of light transport for QPAT, which provides
comparable computational efficiency as the DA whilst maintaining sufficient accuracy in regions close to sources.
Details of the derivation of the δ-Eddington model and its incorporation into a gradient-based minimisation
scheme are included, and the results of the inversion when using 2D and 3D simulated photoacoustic images are
presented.

Keywords: Photoacoustic tomography, quantitative, chromophore concentrations, δ-Eddington approximation,
gradient-based minimisation

1. QUANTITATIVE PHOTOACOUSTIC IMAGING

In photoacoustic tomography (PAT), an image is reconstructed from the measurements of the acoustic waves
emitted following the absorption of a short pulse of laser light incident on a tissue region of interest. This
image represents the distribution of initial pressure that arose following the absorption of optical energy, and is
related, but not proportional, to the optical absorption coefficient of the tissue region. The aim of quantitative
photoacoustic tomography (QPAT) is to determine the optical absorption coefficient from a given PAT image,
and hence determine the related chromophore concentration distributions. Such a technique could be combined
with a spectroscopic approach to provide functional information about the tissue, or used to obtain images of
externally administered chromophores such as contrast agents, enabling molecular imaging.1 However, since
a PAT image is not directly proportional to the absorption coefficient, but is distorted by the light fluence,
determining the absorption coefficient is nontrivial. This is because the fluence Φ depends on the absorption and
scattering coefficients in the tissue (denoted µa and µs, respectively), so that the PAT image, which is an image
of the initial pressure distribution p0, is nonlinearly related to µa:

p0(r) = Γ(r)µa(r)Φ(r;µa(r), µs(r)), r ∈ Ω ∈ R3. (1)

The Grüneisen parameter Γ is a thermodynamic property of the tissue, which we will assume is known throughout
the domain Ω. This type of nonlinear, ill-posed inverse problem can be solved using a model-based minimisation
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technique,2–5 however, when choosing which model of light transport and which minimisation scheme to use it is
important that we bear in mind the inherent large-scale of the problem. In PAT, we are generally interested in
3D images, and the spatial resolution will depend on the depth of the image. A typical image of size 1 cm3 with
a spatial resolution of 100 µm would possess 106 voxels, so that the inverse problem contains on the order of 106

unknowns. In Sec. 2 we discuss some possible choices of light model and motivate the use of the δ-Eddington
approximation for 3D QPAT. In Sec. 3 we propose the use of a gradient-based minimisation scheme for 3D
QPAT, and provide the relevant gradient calculations when using the δ-Eddington approximation in the forward
PAT model. Results of the inversion using 2D and 3D simulated data are presented in Sec. 4 and discussed in
Sec. 5.

2. MODELS OF LIGHT TRANSPORT

2.1 Radiative transfer equation

The radiative transfer equation (RTE) is an integro-differential equation which describes the transport of energy
through an absorbing and scattering medium. The RTE is based on the principle of energy conservation, and
balances the change in the radiance φ(r, ŝ) at position r travelling in a direction of the unit vector ŝ. The RTE,
given by

(ŝ · ∇+ µa + µs)φ(r, ŝ) = µs

∫
4π

Θ(ŝ, ŝ′)φ(r, ŝ′) dŝ′ + q, (2)

where µa = µa(r) and µs = µs(r) are the absorption and scattering coefficients at position r, respectively, and
Θ(ŝ, ŝ′) is the scattering phase function, describes how energy may be lost due to absorption and scattering out
of the direction of interest, or may be gained through scattering into the direction of interest or from a source of
energy q = q(r, ŝ). Θ(ŝ, ŝ′) represents the fraction of light scattered from a direction ŝ′ into a direction ŝ, and
is normalised such that ∫

4π

Θ(ŝ, ŝ′) dŝ′ = 1. (3)

Usually the form of Θ is not known, and since biological tissues have a complex structure, determining its form is
nontrivial. The Henyey-Greenstein phase function,6 which we will denote by ΘHG, has been shown to accurately
describe the scattering phase function in biological tissue.7 The Henyey-Greenstein phase function can be written
as an infinite sum of the Legendre polynomials Pn

ΘHG =

∞∑
n=1

2n+ 1

4π
gnPn(ŝ · ŝ′), (4)

where g is the average cosine of the phase function, given by

g =

∫
4π

Θ(ŝ, ŝ′)(ŝ · ŝ′) dŝ, (5)

and is often called the anisotropy factor since it describes the scattering anisotropy; g = 0 describes isotropic
scattering, 0 < g ≤ 1 describes predominantly forward scattering and −1 ≤ g < 0 describes predominantly back-
ward scattering. Light scattering in biological tissue is generally forward concentrated, with typical anisotropy
factors of g ≈ 0.9.

The general solution to the RTE is not known, and analytic solutions are limited to simple conditions and
geometries. Numerical solutions can be made to solve the RTE for more versatile conditions and arbitrary
geometries, though since in PAT we are generally interested in 3D images, a numerical solution to the RTE will
require significant computational memory and time due to the angular dependence of the phase function; the
solution φ(r, ŝ) is a function of angle at each point within the domain, so that the three-dimensional problem
essentially becomes a four-dimensional problem. However, by making approximations to the scattering phase
function the angular dependence can be removed entirely, resulting in a more tractable, albeit less accurate,
model of light transport.
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2.2 Diffusion approximation

The diffusion approximation (DA) to the RTE can be made by truncating the Henyey-Greenstein phase function
(4) at n = 1.8 This results in a new phase function, sometimes called the Eddington phase function, given by

ΘE =
1

4π
(1 + 3g(ŝ · ŝ′)). (6)

The radiance is also be written as a sum of Legendre polynomials, in which case the truncation at n = 1 means
that the radiance can be expressed as

φ(r, ŝ) =
1

4π
Φ(r) +

3

4π
ŝ · J(r), (7)

where Φ is the fluence and J is the radiant flux vector, defined by

Φ(r) =

∫
4π

φ(r, ŝ) dŝ, J(r) =

∫
4π

φ(r, ŝ)ŝ dŝ. (8)

The source term q is also written as a sum of Legendre polynomials. Using these approximations enable the
derivation of a diffusion equation

(µa −∇ · κ(r)∇)Φ(r) = q0(r), (9)

where κ is the diffusion coefficient, given by

κ =
1

3(µa + µs(1− g))
, (10)

and

q0(r) =

∫
4π

q(r, ŝ) dŝ. (11)

The removal of angular dependence means that the DA requires much less computational effort to solve than
the RTE. However, the effect of using this approximation to the scattering phase function is that the scattering
of light is assumed to be near-isotropic throughout the entire domain, though, as discussed in Sec. 2.1, the
scattering of light in biological tissue is highly forward-peaked and will not behave diffusely until at least a few
scattering events have occured. This move into the diffusive regime occurs around a few transport mean free
paths away from the source, where a transport mean free path is given by l = (µa + µs(1 − g))−1. For this
reason, the DA breaks down at regions within a few transport mean free paths from any light sources, where
the scattering of light in tissue cannot be considered diffuse. For PAT these regions are of great interest and
may constitute a significant part of the image, and so the DA may not be a sufficiently accurate model of light
transport for QPAT.

The expansion of the radiance and phase function into spherical harmonics is one of a number of ways to
derive the DA,8–10 and although the details have been omitted, the derivation of the diffusion equation above
closely follows that of the delta-Eddington approximation below.

2.3 δ-Eddington approximation

The Eddington phase function approximation can be improved by incorporating an extra term, which has the
effect of shifting a portion f of the light into the forward direction to better model the forward-peaked scattering
of biological tissue. To obtain the δ-Eddington approximation, the phase function ΘE is replaced by the delta-
Eddington phase function ΘδE of Joseph et al.11

Θδ−E =
1

4π

{
2fδ(1− (ŝ · ŝ′)) + (1− f)(1 + 3ĝ(ŝ · ŝ′))

}
. (12)

The modified anisotropy factor ĝ can be found by considering that, in turbid media, the DA is valid at depths
greater than a few transport mean free paths. In this region, the scattering of light is characterised solely by the

Proc. of SPIE Vol. 8581  85810V-3

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 03/28/2013 Terms of Use: http://spiedl.org/terms



reduced scattering coefficient µ′s = µs(1−g). If we define the modified reduced scattering coefficient µ̂′s = µ̂s(1−ĝ)
and enforce the requirement that this parameter remain unchanged, we can find an expression for the modified
anisotropy factor ĝ:

µ̂′s = µ′s ⇒ µs(1− f)(1− ĝ) = µs(1− g) ⇒ ĝ =
g − f
1− f

. (13)

The parameter f can be chosen to best match an appropriate scattering phase function, for example, an empirical
formula for calculating f as a function of g (f = 0.026094g3+0.023597g2+0.13572g+0.60366) was determined by
comparison with Monte Carlo simulations,12 while comparison with the first n terms of the Henyey-Greenstein
phase function results in a choice of f = gn.

Given a suitable choice of f , the approximation to the phase function Θ ≈ Θδ−E can be substituted into the
RTE (2) to give

(ŝ · ∇+ µa + µ̂s)φ(r, ŝ) =
µ̂s

4π

∫
4π

(1 + 3ĝ(ŝ · ŝ′))φ(r, ŝ′) dŝ′, (14)

where µ̂s = (1− f)µs. The radiance may be separated into its collimated (φc) and scattered (φs) components

φ(r, ŝ) = φc(r, ŝ) + φs(r, ŝ), (15)

and hence the fluence can be separated similarly, since

Φ(r) =

∫
4π

φ(r, ŝ) dŝ =

∫
4π

φc(r, ŝ) dŝ+

∫
4π

φs(r, ŝ) dŝ = Φc(r) + Φs(r), (16)

where Φc and Φs denote the collimated and scattered fluence, respectively. Substituting Eqs. (15) and (16) into
Eq. (14) gives

(ŝ · ∇+ µa + µ̂s)(φc(r, ŝ) + φs(r, ŝ)) =
µ̂s

4π
(Φc(r) + Φs(r)) +

3ĝµ̂s

4π

∫
4π

(ŝ · ŝ′)(φc(r, ŝ′) + φs(r, ŝ
′)) dŝ′. (17)

The collimated radiance includes both unscattered light and light scattered into the forward direction ẑ, and is
hence attenuated at a rate proportional to the transport coefficient µ̂t = µa + µ̂s:

(ŝ · ∇)φc(r, ŝ) = −µ̂tφc(r, ŝ). (18)

This can then be used to reduce Eq. (17) to

(ŝ · ∇+ µa + µ̂s)φs(r, ŝ) =
µ̂s

4π
(Φc(r) + Φs(r)) +

3ĝµ̂s

4π

∫
4π

(ŝ · ŝ′)(φc(r, ŝ′) + φs(r, ŝ
′)) dŝ′. (19)

If the source is a monodirectional flux I0(r) incident in the positive z-direction, the solution to Eq. (18) is given
by

φc(r, ŝ) = I0(r) exp

(
−
∫ z

z0

µ̂t(z
′) dz′

)
δ(1− (ŝ · ẑ)), (20)

where ẑ is a unit vector in the z-direction, which means the collimated fluence can be written as

Φc(r) =

∫
4π

φc(r, ŝ)dŝ

= I0(r) exp

(
−
∫ z

z0

µ̂t(z
′) dz′

)
. (21)

Substituting Eqs. (20) and (21) into Eq. (19) then gives

(ŝ · ∇+ µa + µ̂s)φs(r, ŝ) =
µ̂s

4π
(Φc(r) + Φs(r)) +

3ĝµ̂s

4π

{
Φc(r)(ŝ · ẑ) +

∫
4π

(ŝ · ŝ′)φs(r, ŝ
′) dŝ′

}
. (22)
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Analagous to Eq. (7) for the DA, the scattered radiance can be written as

φs(r, ŝ) =
1

4π
Φs(r) +

3

4π
(ŝ · J s(r)), (23)

where Φs is the scattered fluence and J s is the scattered radiant flux. This is substituted into Eq. (22) to give

(ŝ · ∇)Φs(r) + µaΦs(r) + 3(ŝ · ∇)(ŝ · J s(r)) + 3(µa + µ̂s)(ŝ · J s(r))

= µ̂s(Φc(r) + Φs(r)) +
3ĝµ̂s

4π

(
Φs

∫
4π

(ŝ · ŝ′) dŝ′ +

∫
4π

(ŝ · ŝ′)(J s(r) · ŝ′) dŝ′
)
. (24)

Integrating Eq. (24) over all angles and using the solid angle vector integral identities∫
4π

ŝ ·A dŝ = 0,

∫
4π

(ŝ ·A)(ŝ ·B) dŝ =
4π

3
(A ·B), (25)

which hold for arbitrary vectors A and B, Eq. (24) reduces to an equation for the divergence of J s:

∇ · J s(r) = µ̂sΦc(r)− µaΦs(r). (26)

If instead we first multiply (24) by ŝ before integrating over all angles, and use the identities∫
4π

(ŝ ·A)ŝ dŝ =
4π

3
A,

∫
4π

(ŝ ·A)(ŝ ·B)ŝ dŝ = 0, (27)

we find this reduces to
1

3
∇Φs(r) + (µa + µ̂s(1− ĝ))J s(r) = 3ĝµ̂sΦc(r)ẑ, (28)

or equivalently,
J s(r) = 3ĝκ̂µ̂sΦc(r)ẑ − κ∇Φs(r), (29)

where κ̂(r) = (3(µa + µ̂s(1− ĝ)))−1. Taking the divergence of Eq. (29) gives a second equation for the divergence
of J s:

∇ · J s(r) = −∇ · κ̂∇Φs(r)− 3ĝκ̂µ̂tµ̂sΦc(r). (30)

We can now equate Eqs. (26) and (30) to obtain a diffusion equation for the scattered fluence

(∇ · κ∇− µa)Φs(r) = −(1 + 3ĝκ̂µ̂t)µ̂sΦc(r), (31)

where the right-hand side represents the collimated source. Thus, having found the collimated fluence Φc using
Eq. (20), the scattered fluence Φs can be found by solving the diffusion equation (31) and the total fluence
found using Φ = Φc + Φs. The reduction to a diffusion equation means that the δ-Eddington approximation is
comparitive to the DA in its computational efficiency, while the improved approximation to the scattering phase
function improves the accuracy at regions close to the source.

3. MINIMISATION-BASED INVERSION

Generally in QPAT, the scattering coefficient µs will not be known in advance, and so it is necessary to recover
both the absorption and scattering coefficients simultaneously from the measured PAT image. Model-based
minimisation-based techniques, which seek to iteratively adjust the parameters in the model until the difference
between the measured and modelled data is minimised, have previously been shown to succesfully recover the
optical coefficients from 2D simulated PAT images.2–5 Hessian- and Jacobian-based methods use the Hessian
matrix of second partial derivatives, or an approximation to the Hessian made using the Jacobian matrix of
first partial derivatives, to direct the minimisation. These methods can perform the inversion in relatively few
iterations, though require significantly more memory than a gradient-based scheme.13 In Sec. 1 we mentioned
that the typical problem would contain around N = 106 unknowns. Since Hessian and Jacobian matrices
have dimensions N ×N , storing these matrices would required on the order of terabytes of computer memory.
Gradient-based methods, however, use only gradient information to approximate the Hessian matrix, and though
they typically require a larger numer of iterations to perform the inversion, the gradient vector has dimensions
N × 1, requiring only megabytes of computer memory for a problem of the same size. For this reason, we choose
to use a gradient-based minimisation scheme to perform the inversion for the optical coefficients µa and µs.
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3.1 Functional gradient calculations

We will first assume that the Grüneisen parameter is known and constant, such that Γ(r) = 1 ∀r ∈ Ω, so that
p0 = µaΦ = µa(Φc + Φs). We seek a solution to

argmin
µa,µs

ε =
1

2
(pmeas

0 − p0(µa, µs))
T(pmeas

0 − p0(µa, µs)), (32)

where pmeas
0 and p0 are the measured and modelled PAT images, respectively. To employ a gradient-based

minimisation scheme, we will need to obtain an expression for the gradient of Eq. (32) with respect to (µa, µs).
This could be done using a finite difference method, whereby the absorption and scattering coefficients are
perturbed at each point in the domain, and the resulting change in ε is noted. For our typical PAT image, such
a method would require 2(N + 2) = 2(106 + 2) runs of the forward model, and so a more efficient method for
calculating the gradients is desirable.

The calculations which follow will be for the discrete case, whereby the diffusion model has been implemented
using the finite element method (FEM), i.e. the diffusion equation for the scattered fluence (31) has been converted
to its weak formulation and the domain is constructed from continuous piecewise linear basis functions ψj(r),
j = 1, . . . , N , so that the scattered fluence can be written as

Φs(r) ≈ Φhs (r) =

N∑
i=1

Φisψ
i(r). (33)

The absorption and scattering coefficients are also defined using a piecewise linear basis:

µa(r) ≈ µha (r) =

N∑
i=1

µiaψ
i(r), µs(r) ≈ µhs (r) =

N∑
i=1

µisψ
i(r). (34)

Having noted that these parameters are now expressed in this form, we will drop the superscript (.)h for notational
convenience. More information on the numerical implementation of the diffusion equation using the FEM can
be found in the literature.14 Applying the FEM allows us to write Eq. (31) in the matrix form

AΦs = b, (35)

where, for j = 1, . . . , N , k = 1, . . . , N ,

Ajk =

∫
Ω

κ̂(r) ∇ψk(r) · ∇ψj(r) dΩ +

∫
Ω

µa(r) ψk(r) · ψj(r) dΩ (36)

and
b = (1 + 3ĝκµ̂t)µ̂sΦc. (37)

We now consider the functional gradient for the absorption coefficient µa. Differentiating Eq. (32) with
respect to µa at a point ri is given by

∂ε

∂µia
= −

(
∂p0

∂µia

)T

(pmeas
0 − p0), (38)

where µia = µa(ri). The derivative of p0 with respect to µia is given by

∂p0

∂µia
=
∂µa

∂µia
Φ + µa

∂Φc

∂µia
+ µa

∂Φs

∂µia
. (39)

Substituting this into Eq. (38) and using the property of matrix transposes

(A1A2 . . . An)T = AT
n . . . A

T
2 A

T
1 , (40)
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we find that

∂ε

∂µia
= −ΦT

(
∂µa

∂µia

)T

(pmeas
0 − p0)−

(
∂Φc

∂µia

)T

µT
a (pmeas

0 − p0)−
(
∂Φs

∂µia

)T

µT
a (pmeas

0 − p0). (41)

The first term can be calculated directly, and the second term requires differentiating Eq. (20) with respect to
µia, which is simply the derivative of an exponentially decaying function. The third term requires the derivative
of the scattered fluence, which we do not have a direct expression for. To obtain this, we differentiate Eq. (35)
with respect to µia to obtain

∂(AΦs)

∂µia
=

∂b

∂µia

⇒ ∂A

∂µia
Φs +A

∂Φs

∂µia
=

∂b

∂µia

⇒ ∂Φs

∂µia
= A−1

(
∂b

∂µia
− ∂A

∂µia
Φs

)
. (42)

Substituting this into (41) gives

∂ε

∂µia
= − ΦT

(
∂µa

∂µia

)T

(pmeas
0 − p0)−

(
∂Φc

∂µia

)T

µT
a (pmeas

0 − p0)

−
(
∂b

∂µia

)T

(A−1)TµT
a (pmeas

0 − p0) + ΦT
s

(
∂A

∂µia

)T

(A−1)TµT
a (pmeas

0 − p0), (43)

and, since (A−1)T = (AT)−1,

∂ε

∂µia
= − ΦT

(
∂µa

∂µia

)T

(pmeas
0 − p0)−

(
∂Φc

∂µia

)T

µT
a (pmeas

0 − p0)

−
(
∂b

∂µia

)T

(AT)−1µT
a (pmeas

0 − p0) + ΦT
s

(
∂A

∂µia

)T

(AT)−1µT
a (pmeas

0 − p0). (44)

We define the adjoint fluence Φ∗ to be the solution to another diffusion equation

ATΦ∗ := µT
a (pmeas

0 − p0)

⇒ Φ∗ = (AT)−1µT
a (pmeas

0 − p0), (45)

and substitute this into Eq. (44) to obtain an expression for the absorption gradient:

∂ε

∂µia
= −ΦT

(
∂µa

∂µia

)T

(pmeas
0 − p0)−

(
∂Φc

∂µia

)T

µT
a (pmeas

0 − p0)−
(
∂b

∂µia

)T

Φ∗ + ΦT
s

(
∂A

∂µia

)T

Φ∗. (46)

The gradient for the scattering coefficient can be found analagously, and is given by

∂ε

∂µis
= −

(
∂Φc

∂µis

)T

µT
a (pmeas

0 − p0)−
(
∂b

∂µis

)T

Φ∗ + ΦT
s

(
∂A

∂µis

)T

Φ∗. (47)

The incorporation of the adjoint model means that both of these functional gradients can be calculated using
only two runs of the forward model, rather than the 2(N + 2) runs required of a finite difference calculation.

4. RESULTS

The gradient calculations described above were used in a gradient-based minimisation scheme, namely the limited-
memory BFGS (l-BFGS) method15 with a storage history of 15 iterations, to solve

argmin
µa,µs

ε =
1

2
(pmeas

0 − p0(µa, µs))
T(pmeas

0 − p0(µa, µs)). (48)
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We include results for both 2D and 3D simulated photoacoustic data; in the 2D case we show the results when
attempting to recover (µa, µs) simultaneously, and in the 3D case we show the results of recovering one coefficient
when the other is known. In each case the measured data pmeas

0 was simulated by defining some absorption and
scattering coefficients (µa, µs) and solving the δ-Eddington approximation described in Sec. 2.3 for the fluence
Φ. In the results which follow, we chose f = g2 and g = 0.9, and the output flux F on the boundary ∂Ω when
solving the diffusion equation for the scattered fluence Φs was given by

F (rb) = − κ̂(rb)n̂(rb) · ∇Φs(r)|∂Ω(rb) , (49)

where rb is a point on ∂Ω and n̂ is a unit vector normal to ∂Ω. The true initial pressure distribution was then
calculated from ptrue

0 = µaΦ, which was used an initial condition to solve the photoacoustic wave equation(
∂2

∂t2
− c2s∇2

)
p = 0, (50)

whose initial conditions are given by

p(r, t)|t=0 = ptrue
0 (r),

∂p

∂t

∣∣∣∣
t=0

= 0, (51)

where cs is the sound speed and p(r, t) represents the acoustic pressure at the point r and time t. The measured
initial pressure distribution pmeas

0 , which constitutes the measured data, was reconstructed from measurements
of the acoustic pressure over some arbitrary measurement surface. Numerous image reconstruction algorithms
for reconstructing the initial pressure distribution exist;16 here, Eq. (50) was solved using a k-space, pseudo-
spectral time domain model and a time-reversal reconstruction algorithm17 was used to simulate a measured
photoacoustic image pmeas

0 . Since we are attempting to recover both absorption and scattering coefficients, this
process was repeated for four different illumination positions to avoid the nonuniqueness problem.18

4.1 2D inversion results

To ensure that the optical coefficients were consistent with those typically found in biological tissue, the
absorption coefficient µa and reduced scattering coefficient µ′s were kept within a typical range of values:
µa(r) ∈ [0.01, 0.3] mm−1 and µ′s(r) ∈ [1, 3] mm−1 ∀r ∈ Ω, where Ω was an 8 mm × 8 mm square domain
consisting of 6050 triangular mesh elements and 3136 nodal points. The absorption and scattering coefficients
were defined on a piecewise linear nodal basis. To begin the minimisation, a starting value of µa = 0.01 mm−1

and µs = 5 mm−1 was used, i.e. the initial guess at (µa, µs) was their background values. Figs. 1(A) and 1(B)
show the true absorption and scattering coefficients, respectively, and Figs. 1(C) and 1(D) show the recovered
absorption and scattering coefficients, respectively, after 1000 iterations. Figs. 1(E) and 1(F) show profile com-
parisons of the true and recovered coefficients in the x-direction. The method was able to recover good estimates
of both absorption and scattering coefficients, though the large number of iterations is mainly due to the slow
convergence of the scattering coefficient. This can be seen in Fig. 2, which shows the percentage of the rela-
tive error in the absorption and scattering coefficient estimates, where the relative error ε is calculated using
ε = (µtrue

a,s −µapprox
a,s )/µtrue

a,s . Although the absorption estimate does not improve much after around 250 iterations,
the error does continue to decrease, albeit very slowly, indicating that the improvement in the scattering estimate
does also improve the absorption estimate.

4.2 3D inversion results

The 3D simulations to provide measured data were performed on an 8 × 8 × 8 mm domain with 29791 regular
voxel elements and 32768 mesh nodes. The absorption and reduced scattering coefficients were kept within
the range described in the 2D case to ensure that the optical coefficients were consistent with those found in
biological tissue. Also consistent with the 2D inversions, the absorption and scattering coefficients were defined
on a piecewise linear nodal basis, and the initial guess at (µa, µs) was chosen to be their background values.
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Figure 1. Inversion results using an l-BFGS minimisation scheme based on the δ-Eddington approximation and 2D
simulated data after 1000 iterations. The method was used to recover both absorption and scattering coefficients simulta-
neously. Figs. A and B show the true absorption and scattering coefficients, respectively, in mm−1. Figs. C and D show
the recovered absorption and scattering coefficients using the same colorbar scale as Figs. A and B. Figs. E and F show
a horizontal profile comparison of the true and recovered absorption and scattering coefficient, respectively.

Figure 2. Percentage of the relative error in the absorption and scattering coefficients as the number of iterations of the
gradient-based minimisation increases. The relative error ε is found using ε = (µtrue

a,s − µapprox
a,s )/µtrue

a,s .
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Figure 3. Inversion results using an l-BFGS minimisation scheme based on the δ-Eddington approximation and 3D
simulated data after 10 iterations. The method was used to recover the absorption coefficient when the scattering
coefficient is known. Fig. A shows a slice through the true absorption coefficient in mm−1. Fig. B shows the same slice
through the recovered absorption coefficient and uses the same colorbar scale as Fig. A. Fig. C shows a horizontal profile
comparison of the true and recovered absorption coefficient.

Figure 4. Inversion results using an l-BFGS minimisation scheme based on the δ-Eddington approximation and 3D
simulated data after 200 iterations. The method was used to recover the scattering coefficient when the absorption
coefficient is known. Fig. A shows a slice through the true scattering coefficient in mm−1. Fig. B shows the same slice
through the recovered scattering coefficient and uses the same colorbar scale as Fig. A. Fig. C shows a horizontal profile
comparison of the true and recovered scattering coefficient.

4.2.1 Recover absorption: known scattering

For the 3D case, we first attempted to reconstruct the absorption coefficient when the scattering coefficient is
known. In this case, we were able to recover the absorption coefficient almost exactly; Fig. 3(A) shows the true
absorption coefficient and Fig. 3(B) shows the recovered absorption coefficient after 10 iterations. A horizontal
profile comparison of the true and recovered absorption coefficient can be seen in 3(C).

4.2.2 Recover scattering: known absorption

Secondly, we attempted to reconstruct the scattering coefficient when the absorption coefficient is known. As seen
in the 2D inversion, the scattering coefficient was much slower to converge to its true value than the absorption
coefficient; Fig. 4(A) shows the true scattering coefficient and Fig. 4(B) shows the recovered scattering coefficient
after 200 iterations. A horizontal profile comparison of the true and recovered scattering coefficient can be seen
in 4(C).

5. DISCUSSION

This paper has investigated the use of the δ-Eddington approximation for 3D QPAT. The δ-Eddington approxi-
mation is more accurate than the DA in regions close to light sources, and is a significantly more efficient model
of light transport than the ‘gold-standard’ RTE, making it a suitable choice for 3D minimisation-based inver-
sions in QPAT. The δ-Eddington approximation was incorporated into our photoacoustic model, which was used
in a gradient-based minimisation scheme, whereby the difference between the measured and modelled data was
minimised with respect to the absorption and scattering coefficients. Inversions were performed using 2D and 3D
simulated data, which included the simulation of acoustic propagation and reconstruction of the initial pressure
distribution using a time-reversal method. In both cases we were able to recover good quantitative estimates
of the absorption coefficient, however, the estimate of the scattering coefficient was much slower to converge to
its true value. Similar difficulties in estimating the scattering coefficient have been seen in previous attempts at
QPAT.19
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The slow convergence of the scattering means that a large number of iterations will typically be required to
obtain an accurate estimate of both optical coefficients simultaneously. In the 2D case this inversion may be
quite manageable, however, PAT images are typically 3D and so the computational time required to perform
1000 iterations is significant enough that the method may be considered impractical. This problem, however, is
not specific to the case when the δ-Eddington approximation is used to model PAT, but is an inherent property
of the quantitative problem; the data pmeas

0 = µaΦ(µa, µs) is much more weakly dependent on scattering than
absorption. Considering this, the δ-Eddington approximation may still be considered the most practical model
for this type of inversion scheme, since using e.g. the RTE to perform this number of iterations will require
significantly more computational effort. The difficutly in recovering the scattering coefficient may not be a
problem, however, depending on the required accuracy of the absorption coefficient: the scattering coefficient is
not required to obtain chromophore concentrations, and the improvement in the absorption estimate is relatively
small after a certain number of iterations. It may be sensible to consider the required accuracy of the resulting
chromophore concentrations before attempting to recover both absorption and scattering coefficients. A sensible
step forward might be to determine how well the absorption coefficient can be recovered if the scattering coefficient
is fixed at some wrong value, say, the background value or mean value, and the effect that any error in this estimate
has on the subsequent inversion for the desired chromophore concentrations.
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