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ABSTRACT 
 
Semiconductor light sources, such as laser diodes or light emitting diodes (LEDs) could provide an inexpensive 
and compact alternative to traditional Q-switched lasers for photoacoustic imaging. So far, only laser diodes 1–3 
operating in the 750 to 905nm wavelength range have been investigated for this purpose. However, operating in 
the visible wavelength range (400nm to 650nm) where blood is strongly absorbent (>10cm-1) and water 
absorption is weak (<0.01cm-1) could allow for high contrast photoacoustic images of the superficial vasculature 
to be achieved. High power laser diodes (>10Watt peak power) are however not available in this wavelength 
range. High power LEDs could be a potential alternative as they are widely available in the visible wavelength 
range (400nm to 632nm) and relatively cheap. High power LEDs are generally operated in continuous wave 
mode and provide average powers of several Watts. The possibility of over driving them by tens of times their 
rated current when driven at a low duty cycle (<1%), offers the prospect of achieving similar pulse energies 
(tens of µJ) to that provided by high peak power pulsed laser diodes. To demonstrate the possibility of using 
high power LEDs as an excitation source for biomedical applications, single point measurements were 
implemented in a realistic blood vessel phantom. A four colour device was also used to demonstrate the 
possibility of using LEDs for making spectroscopic measurements. It was shown that when driving all four 
wavelengths at once, the generated photoacoustic signal could be used to design a filter in order to improve the 
SNR of the photoacoustic signals generated at each individual wavelength. The possibility of acquiring 
multiwavelength data sets simultaneously when using Golay excitation methods was also demonstrated. This 
preliminary study demonstrated the potential for using high power LEDs as an inexpensive and compact 
excitation source for biomedical photoacoustics.   
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1. INTRODUCTION 
 
To facilitate the translation of photoacoustic techniques4 from the laboratory to biomedical applications, cheaper 
and more compact excitation sources than the traditional Q-switched Nd:YAG pumped OPO, Ti:sapphire or dye 
laser systems are required. High peak power pulsed laser diodes have previously been investigated as a potential 
excitation source for photoacoustic tomography2,3,5. These devices have the advantage of being compact, 
relatively inexpensive (<$100), provide high pulse repetition frequencies (>1kHz) and are robust (life times 
>100000hours). It was shown that their relatively low pulse energy (tens of µJ) compared to the several mJ 
provided by Q-switched excitation sources could be overcome by exploiting their high pulse repetition 
frequencies (PRF) to rapidly acquire and signal average many signals over a short period of time. The main 
drawback of these high peak power pulsed laser diodes is the limited range of wavelengths to select from (905, 
850 and 1550nm are the only commercially available wavelengths). Laser diodes in the 500-750nm wavelength 
range are available but don’t provide the necessary high peak powers (>10Watts).  
 
LEDs provide the same advantages as laser diodes with the added benefit of being available in a wider range of 
wavelength (400-905nm). Figure 1 shows some of the wavelengths that are commercially available. As with 
laser diodes, the pulse energies provided by LEDs (tens of µJ when overdriven6,7) are relatively low compared 
to those provided by Q-switched excitation sources (several mJ). However, the possibility of exploiting the high 
PRF of LEDs to rapidly acquire and signal average many signals in a short period of time and the strong 
absorption of blood in the visible wavelength range (400-750nm) suggest that photoacoustic signals with 
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adequate SNR for photoacoustic imaging could be obtained. A previous study using an LED to generate  
photoacoustic signals has been reported8. However in this study, the LED used was only able to provide pulse 
energies of 360nJ and therefore required the focusing of the emitted light and 50000 signal averages to be 
implemented in order to detect a photoacoustic signal in a non-realistic phantom.    
 

 
Figure 1: Spectra from typical high power LEDs9  

 
In this study LEDs are investigated as a potential excitation source for biomedical photoacoustic applications. 
Section 2 describes single point measurements made in a realistic tissue mimicking phantom. Section 3 
demonstrates the ability of these devices to make spectroscopic measurements and discusses a filtering method 
used to improve SNR. Section 4 discusses the possibility of using Golay excitation codes to acquire 
photoacoustic signals at multiple wavelengths simultaneously. Using such excitation codes could reduce the 
acquisition time when implementing spectroscopic measurements.   

 
2. SINGLE POINT MEASUREMENTS IN A TISSUE MIMICKING PHANTOM 

 
To demonstrate the possibility of using high power LEDs as an excitation source for biomedical photoacoustic 
applications, a photoacoustic signal was generated and detected in a tissue mimicking phantom. The 
experimental setup is illustrated in figure 2 where a 580µm diameter tube was filled with human blood (35% 
haematocrit) and immersed to a depth of 5mm in a 1% solution of intralipid (µ’s=1mm-1) to mimic the scattering 
properties of biological tissue. The phantom was illuminated by a high power LED (CBT-120 from Luminus), 
providing pulse energies of 22µJ when overdriven 10 times its rated current. The excitation pulse duration was 
500ns and the PRF was 200Hz. To avoid any thermal damage due to overdriving, the duty cycle was kept below 
1%. The emitting wavelength was 623nm and the beam diameter incident on the scattering medium was 
approximately 1cm in diameter. The generated photoacoustic signal was detected using a cylindrically focused 
PZT detector (3.5MHz, V383 Panametric) of focal length 33mm. The blood filled tube was located at the focus 
of the ultrasound detector. The detected signal was amplified using a preamplifier (8dB, Precision Acoustics 
Ltd) and a low noise voltage amplifier (60dB, Analog Modules Inc), signal averaged 1000 times and then 
downloaded to a personal computer (PC).     
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The four colour device provides the possibility of driving all four of its wavelengths simultaneously allowing for 
a photoacoustic signal with improved SNR to be acquired. For example, the photoacoustic signal shown in 
figure 6 was obtained using the setup shown in figure 4 when all wavelengths are driven simultaneously. The 
SNR of this photoacoustic signal was measurement to be 71 as opposed 21, 6, 30, and 32 obtained when 
individually emitting at a wavelength of 460, 523, 590, and 623nm respectively.  
 

 
Figure 6: Photoacoustic signal obtained when driving all four wavelength simultaneously. T is the trigger, A is the 

photoacoustic signal and B is an acoustic reflection.  

 
If it is assumed that the temporal shape of the photoacoustic signals generated by each individual wavelength are 
identical to each other (this is reasonable when the light penetration depth is significantly larger than the size of 
the absorber), the power spectrum of the photoacoustic signal generated by all wavelengths simultaneously can 
be used to design a filter to improve the SNR of the photoacoustic signals generated by each individual 
wavelength.  
 
This can be implemented as a wiener filter (H(f))  
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)( fs
allλ is the power spectrum of the photoacoustic signal generated by all 4 wavelengths and N is the 

threshold in the power spectrum where noise becomes dominant. The photoacoustic signals generated by a 
single wavelength (Sλ1) can then be filtered as follow 
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(2) 

 
where Sλ1 and Yλ1 are the photoacoustic signals generated by a single wavelength before and after filtering. 
Figure 7 shows the photoacoustic signals previously show in figure 5 after filtering. An improvement in the 
SNR by a factor of 3 was observed.  
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Golay codes have two main advantages; (1) they allow for the SNR of the photoacoustic signal to be increased 
as a function of N where N is the code length, (2) they can be used to acquire a data set at multiple 
wavelengths simultaneously12 when using different sets of orthogonal codes. To illustrate the latter, the 
experimental setup shown in figure 4 was used to generate photoacoustic signals whiles driving the 460nm and 
590nm device with two different sets of orthogonal codes simultaneously. The code was 8bit long and each bit 
was 1µs long corresponding to a total duration of 8µs.The PRF of the LEDs was 200Hz. The devices were here 
only overdriven by three times their rated current to prevent from any damage due to the increased duty cycle.  
  
Figure 9 (a) and (b) show the photoacoustic signals obtained using the Golay excitation method (emitting both 
wavelengths simultaneously) and the conventional pulsed excitation method (emitting each wavelength 
sequentially) respectively. It can be seen that the temporal shapes of the photoacoustic signals obtained using the 
Golay excitation method correlate well with those obtained using the pulsed excitation method. The main 
observable differences is the noise level being significantly reduced in figure 9 (a) compared to figure 9 (b). The 
reduction in noise is due to the cross correlation acting as a low pass filter, removing the unnecessary high 
frequency components which are dominated by noise. The bandwidth of the photoacoustic signal generated by 
the Golay excitation method is determined by the width of each bit (1μs). The acquisition time was 20ms when 
using the Golay excitation method whereas for the pulsed excitation method an acquisition time of 80ms was 
required when operating at a PRF=200Hz.   

  
Figure 9: (a) Photoacoustic signals generated using Golay excitation codes (b) Photoacoustic signals generated by pulsed 

excitation method. T is the trigger, A is the photoacoustic signal and B is an acoustic reflection. 
 
 

5. DISCUSSION & CONCLUSION 
 

This study has demonstrated that high power LEDs could be used to generate photoacoustic signals with 
sufficient SNR to achieve penetrations depths of 5mm in a realistic blood vessel phantom. By exploiting the 
high absorption coefficient of blood in the visible wavelength range and the high PRF of the LEDs to acquire 
and signal average many signals over a short period of time adequate SNR was obtained with pulse energis of a 
few µJ. Improvements in SNR could potentially be obtained by further overdriving these devices. For example, 
the CBT-120 device was only overdriven by 10 times its rated current, as the maximum peak current provided 
by the driver was limited to 200A. However, it has been reported6 that this device can withstand peak currents of 
up to 250A. A detailed study investigating the amount of overdriving these LEDs can withstand and the effect 
this will have on their lifespan is required.    
 
The possibility of acquire photoacoustic signal at multiple wavelengths simultaneously when using Golay codes 
was also demonstrated. The SNR of the photoacoustic signal acquired using this excitation method could be 
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improved if longer excitation codes were used, as the SNR will scale with N . Increasing the code length will 
limit the amount of overdriving which can be implemented safely as the junction temperature of the LED will 
rise due to the increase in duty cycle. However if the code length is made sufficient long (e.g. >10000bits) it 
may not be necessary to overdrive the LEDs in order to obtain photoacoustic signals with adequate SNR. Such 
an excitation scheme has the potential to reduce the acquisition time when implementing photoacoustic 
spectroscopic measurements.     
 
So far the LEDs have been placed as close as possible to the tissue mimicking phantoms and the beam diameter 
illuminating the sample has been relatively large (1cm) due to the large size of the emitting area 12mm2 and the 
divergence (60o) of the light. It may be possible to weakly collimate the light on to the phantom. This could 
result in an improvement in the SNR of the generated photoacoustic signal due to the increase in fluence. In 
addition if sufficient focusing can be achieved these devices may be suitable for imaging modalities which 
require relatively low pulse energies, such as acoustic resolution photoacoustic microscopy (ARPAM) which 
requires pulse energies of tens of µJ13 or optical resolution photoacoustic microscopy (ORPAM) where pulse 
energies of less than 100nJ14,15 are required.  
 
In summary this work represents a first step towards demonstrating that high power LEDs could be used as a 
compact and relatively low cost excitation source for superficial biomedical photoacoustic applications.  
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