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ABSTRACT   

Genetically expressed contrast agents are of great interest in the life sciences as they allow the study of structure and 
function of living cells and organisms. However, many commonly used fluorescent proteins present disadvantages when 
used in mammalian organisms, such as low near-infrared absorption and photostability. In this study, a variety of 
genetically expressed fluorescent proteins and novel chromoproteins were evaluated using photoacoustic spectroscopy. 
The results showed that chromoproteins provide stronger photoacoustic signals, better spectral stability, and exhibit less 
photobleaching than fluorescent proteins. 

Keywords: Photoacoustic spectroscopy, fluorescent proteins, chromoproteins, genetic expression 
 

1. INTRODUCTION  
Fluorescent proteins are widely used as reporter genes in preclinical research to study biological events, such as gene 
expression and apoptosis. In photoacoustic imaging1, genetically expressed fluorescent proteins have been used in 
zebrafish and Drosophila (fruitfly) pupa by generating photoacoustic signals at excitation wavelengths that lie in the 
absorption band of the fluorophore. Although some genetically expressed fluorescent proteins exhibit absorption into the 
red wavelength region2, relatively few provide strong absorption at near-infrared wavelengths where penetration depth in 
mammalian tissues is greatest. A rare example of a near-infrared fluorescent protein is iRFP3, a bacteriophytochrome-
based protein with maximum absorption at 680nm, which has recently been used as a genetically expressed contrast 
agent for photoacoustic tumour imaging in mice4. As a consequence the potential use of most fluorescent proteins in 
mammalian small animal models is restricted to superficial imaging applications. In addition, many fluorescent proteins 
lack photostability, which can manifest itself as dark states5, blinking6, transient absorption7, and photobleaching8. 
Furthermore, little is known about their response to the high peak power laser pulses used in photoacoustic imaging - 
apart from the reduction in the amount of energy that is available for thermalisation, and hence the photoacoustic effect, 
due fluorescent emissions. Lastly, genetically expressed non-fluorescent proteins, called chromoproteins9, may be a 
suitable alternative for photoacoustic imaging. In this study, the efficiency with which photoacoustic signals are 
generated in fluorescent proteins and chromoproteins is evaluated using photoacoustic spectroscopy. 
 

2. METHODS 
2.1 Bacterial expression of fluorescent proteins and chromoproteins 

The genes encoding the fluorescent proteins mCherry10, mNeptune11, mRaspberry12, and E2 Crimson13 and the 
chromoproteins aeCP59714 and cjBlue were synthesised in multiple stages. A gene encoding for a fluorescent protein or 
chromoprotein is assembled using commercially available oligonucleotide fragments15. The gene not only encodes the 
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(Figure 2c), and mNeptune (Figure 2d). To allow a qualitative comparison of the shape of the amplitude spectrum with 
that of the specific extinction coefficient spectrum, the vertical scales of each graph were adjusted by eye until a 
reasonable match between the two types of spectra was achieved. 

Significant differences between the shapes of the specific extinction spectra and the corresponding photoacoustic 
amplitude spectra were observed for all fluorescent proteins. The differences are most noticeable at wavelengths where 
the specific extinction coefficient is greatest and resulted in a double-peaked photoacoustic amplitude spectrum. 
 

 
 

Figure 2  Photoacoustic spectra (circles) of purified fluorescent protein solutions of (a) mCherry, (b) mRaspberry, (c) E2 Crimson, (d) 
mNeptune together with their specific extinction coefficient spectra (dashed lines). The error bars represent the standard deviation of 

the measurements. 
 

3.2 Photoacoustic amplitude spectra of chromoproteins 

Figure 3 shows the photoacoustic amplitude spectra (circles) of the chromoproteins cjBlue and aeCP597, and their 
corresponding specific extinction spectra (dashed lines). The shape of the photoacoustic amplitude spectra are generally 
in good qualitative agreement with the specific extinction spectra and do not exhibit a double peak as seen in fluorescent 
proteins. In addition, their optical absorption extends further into the near-infrared wavelength region. For example, 
cjBlue exhibits significant absorption at wavelengths up to 650nm. 

 

3.3 Photoacoustic amplitude spectra normalised to the absorption coefficient 

The amplitude spectra were divided by the peak absorption coefficient of the sample solutions as measured by the 
spectrophotometer. Absorption normalisation allowed a direct comparison of the photoacoustic amplitude spectra of all 
proteins. This provided an indication of the efficiency with which photoacoustic signals are generated in each protein 
species, i.e. how much of the optical energy is thermalized and converted to pressure. Figure 4 shows photoacoustic 
amplitude spectra (represented as data points connected by a spline curve for better visualisation) of the chromoproteins 
aeCP597 and cjBlue, and the fluorescent proteins E2 Crimson, mNeptune, mRaspberry, and mCherry. The photoacoustic 
signal amplitude produced in the fluorescent proteins is less than half that observed in the chromoproteins, suggesting 
inefficient photoacoustic signal generation. Figure 4 clearly demonstrates that chromoproteins provide stronger 
photoacoustic signals than fluorescent proteins. 
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Figure 3 Photoacoustic spectra (circles) of purified chromoprotein solutions of cjBlue and aeCP597. The corresponding specific 

extinction coefficient spectra are shown as a dashed line. The error bars represent the standard deviation of the measurements.  
 

 

 
Figure 4 Absorption-normalised photoacoustic spectra of fluorescent proteins (mNeptune, mRaspberry, mCherry, E2 Crimson) and 

chromoproteins (aeCP597, cjBlue). 
 

3.4 Photobleaching 

To assess photobleaching, the protein samples were irradiated with laser pulses and the photoacoustic signal amplitude 
was recorded over time. To improve the visualisation of the results, a hyperbolic function was then fitted to the 
photobleaching curve and the determined coefficients were in turn used as input parameters to plot the decay curves. 
Figure 5 shows the change in the signal amplitude as a function of the number laser pulses for the fluorescent proteins and 
chromoproteins investigated in this study. Most fluorescent proteins exhibited a decrease in signal amplitude with 
increasing number of laser pulses. E2 Crimson was the exception and provided almost constant signal amplitude during 
the measurement. This is somewhat surprising since E2 Crimson has been shown to exhibit biphasic photobleaching in 
confocal microscopy13. By comparison, the average radiant power used to obtain the results shown in Figure 5 was orders 
of magnitude lower, which may explain the absence of photobleaching. In contrast to the majority of fluorescent proteins, 
the chromoproteins showed only minor photobleaching. 
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Figure 5 Photobleaching of fluorescent proteins and chromoproteins under prolonged exposure to nanosecond laser pulses. The 
fluence at the sample ranged from 1.5 to 1.7 mJ cm-2.  

 

4. DISCUSSION AND CONCLUSIONS  
This study has shown that the photoacoustic signal amplitude generated in the fluorescent proteins is lower compared to 
the chromoproteins (Figure 4). In addition, the shapes of the photoacoustic amplitude spectra of the fluorescent proteins 
evaluated in this study are different to those of the corresponding extinction coefficient spectra (Figure 2) while good 
agreement was observed in chromoproteins (Figure 3). Lastly, fluorescent proteins show stronger photobleaching 
compared to chromoproteins (Figure 5). 

The lower photoacoustic signal amplitudes in fluorescent proteins can be explained in part by the loss of energy 
due to fluorescent emissions. However, the absorption-normalised spectra suggest that additional mechanisms contribute 
to a reduced thermalisation of the optical excitation pulse. For example, ground state bleaching17 due to long electronic 
relaxation times is a likely cause. It occurs when a fraction of fluorescent molecules is promoted to an excited state, 
leaving less (or no) molecules available to facilitate ground state absorption. Since the electronic transitions involved in 
fluorescence and phosphorescence occur on sub-nanosecond to millisecond time scales18, early arriving photons of a 
nanosecond excitation pulse would encounter fluorescent proteins in the ground state while later arriving photons would 
also encounter proteins in the excited state. This reduces the nominal absorption coefficient at the excitation wavelength, 
and therefore the photoacoustic signal amplitude. Given that the electronic relaxation times (or fluorescence lifetimes) of 
many fluorescent proteins, including those investigated in this study, are of the order of nanoseconds19–21, ground state 
bleaching is therefore a likely cause of the reduced photoacoustic signal amplitude observed in this study.  
Chromoproteins, by contrast, do not fluoresce or phosphoresce and are likely to exhibit short, vibrational relaxations (of 
the order of ps). This would prevent ground state bleaching during ns excitation pulses and ensure efficient 
thermalisation and photoacoustic signal generation. 

Another consequence of the long relaxation times seen in fluorescent proteins is irreversible photobleaching22. 
Long relaxation times increase the likelihood of electronic transitions via the triplet state, which can create highly 
reactive singlet oxygen that can damage the fluorophores, thus causing photobleaching22. Chromoproteins, owing to their 
fast relaxation times, are much less likely to generate singlet oxygen. This explanation agrees with the results of this 
study, which show that fluorescent proteins tend to photobleach much faster than chromoproteins. 

While fluorescent energy loss and ground state bleaching may explain why fluorescent proteins produce lower 
photoacoustic signal amplitudes than chromoproteins, it is less straightforward to explain the difference in shape between 
the photoacoustic and corresponding optical absorption spectra. A possible reason may be the re-absorption and 
thermalisation of a portion of the fluorescent emission from one molecule by another (excited) molecule due to transient 
absorption. The total absorbed energy would then also depend upon the wavelength dependence of fluorescence, 
transient absorption, and ground state absorption. The combination of partial ground state absorption, ground state 
bleaching, and fluorescence absorption may explain the shapes of the photoacoustic spectra observed in this study. 
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The results of this study suggest that fluorescent proteins are less suitable for photoacoustic imaging than 
chromoproteins. However, while the chromoproteins evaluated in this work provided greater photoacoustic signal 
amplitude and exhibited lower photobleaching, it is unclear whether they are biocompatible and efficiently expressed in 
mammalian cells. Further development, similar to that many fluorescent proteins have undergone, may therefore be 
needed to establish chromoproteins as genetically expressed photoacoustic contrast agents. 
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