Two-dimensional photoacoustic imaging by use of
Fourier-transform image reconstruction and a
detector with an anisotropic response

Kornel P. Kostli and Paul C. Beard

Theoretical and experimental aspects of two-dimensional (2D) biomedical photoacoustic imaging have
been investigated. A 2D Fourier-transform-based reconstruction algorithm that is significantly faster
and produces fewer artifacts than simple radial backprojection methods is described. The image-
reconstruction time for a 208 X 482 pixel image is ~1 s. For the practical implementation of 2D
photoacoustic imaging, a rectangular detector geometry was used to obtain an anisotropic detection
sensitivity in order to reject out-of-plane signals, thereby permitting a tomographic image slice to be
reconstructed. This approach was investigated by the numerical modeling of the broadband directional
response of a rectangular detector and imaging of various spatially calibrated absorbing targets im-
mersed in a turbid phantom. The experimental setup was based on a @-switched Nd:YAG excitation
laser source and a mechanically line-scanned Fabry—Perot polymer-film ultrasound sensor. For a 800
pm X 200 pm rectangular detector, the reconstructed image slice thickness was 0.8 mm up to a vertical
distance of z = 3.5 mm from the detector, increasing thereafter to 2 mm at z = 10 mm. Horizontal and
vertical spatial resolutions within the reconstructed slice were approximately 200 and 60 pm, respec-

tively. © 2003 Optical Society of America

OCIS codes:

1. Introduction

Biomedical photoacoustic imaging is based on irradi-
ating a soft-tissue volume with nanosecond laser
pulses. Absorption of the laser pulses results in a
rapid temperature rise of the irradiated volume.
This is followed by rapid thermoelastic expansion
leading to an initial stress distribution, which acts as
a pulsed source of broadband ultrasonic waves.
These propagate to the surface where they are de-
tected by an array of ultrasound detectors. Assum-
ing a homogeneous distribution of the tissue
thermomechanical properties and acoustic propaga-
tion parameters, an image of the internally absorbed
laser energy distribution can then be reconstructed
from the detected time-resolved photoacoustic sig-
nals. The principal advantage of the technique is
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that image contrast is based largely on differences in
tissue optical properties, and, because these are
strongly dependent on tissue constituents and struc-
ture, it offers the prospect of differentiating between
soft tissues that are indistinguishable when other
imaging modalities are used. For example, the
strong optical absorption of hemoglobin offers the po-
tential for high-contrast imaging of microvessels,-3
which, owing to their relatively low echogenicity, can
be difficult to observe with conventional ultrasound
imaging. Among the potential clinical applications
that could exploit this are the assessment of breast
cancer tumors* and other soft-tissue abnormalities®
characterized by local structural and functional
changes in the microvasculature.

Biomedical photoacoustic imaging is generally a
three-dimensional (3D) problem: The strong optical
scattering exhibited by tissues results in a 3D distri-
bution of photoacoustic sources, and these, owing to
the geometry of anatomical structures of interest,
tend to emit acoustic energy into a large solid angle.
The most apparent solution is to detect the photo-
acoustic signals over an area of the tissue surface by
use of a two-dimensional (2D) array of isotropic ul-
trasound detectors and to reconstruct a 3D image
from the detected signals.1:3:6.7 However, the high
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cost and formidable technical difficulties involved in
implementing such arrays with sufficiently high
channel counts for acceptable data-acquisition times
present substantial disadvantages. As in conven-
tional medical ultrasound imaging,® detecting the
signals along a line on the tissue surface by use of a
linear or curvilinear array* of detectors of anisotropic
response and reconstructing a 2D tomographic slice
image often presents a more practicable and cost-
effective clinical implementation owing to the much
lower number of elements required. This is partic-
ularly so if near-real-time data acquisition and image
reconstruction are required.

In this paper 2D photoacoustic imaging by use of
linear arrays is explored theoretically and experi-
mentally. Subsection 2.A presents aspects of 2D
image reconstruction: the inherent ambiguity
that arises from reducing the problem to two dimen-
sions and a rapid Fourier-transform-based image-
reconstruction algorithm—the latter fulfills an
important requirement, given the applicability of
2D photoacoustic imaging to real-time imaging. A
key requirement for practical implementation is the
use of a rectangular detector element geometry to
provide an anisotropic response so that signals orig-
inating from sources situated outside the detection
plane are rejected. The directional characteristics
of such a receiver in response to broadband photo-
acoustic signals are numerically modeled in Sub-
section 2.B. An experimental arrangement, based
on a mechanically line-scanned Fabry—Perot (FP)
optical ultrasound sensor for simulating a linear
array, is described in Subsection 3.A. This system
was used to obtain photoacoustic signals from var-
ious absorbing targets immersed in turbid media.
These experimental data were used to evaluate the
Fourier-transform reconstruction algorithm (Sub-
section 3.B) and the geometrical parameters of the
reconstructed image slice obtained with a rectan-
gular detector geometry (Subsection 3.C).

2. Theory

A. Two-Dimensional Image Reconstruction

Photoacoustic imaging is generally of a 3D nature:
Acoustic waves are emitted by a 3D distribution of
elemental photoacoustic sources radiating into a 4m
solid angle and detected over an external surface or a
volume. From the time-dependent detected signals
p(x,y, 2, t), the initial 3D source distribution p,(x, y,
z) can be reconstructed. For the specific task of re-
constructing a 2D image in the x—z detection plane
(Fig. 1), from an array of detectors arranged along a
line y = 0 in the x—y plane, the problem can be re-
duced to two dimensions by introduction of one of the
following assumptions:

1. Two-dimensional source distribution: pg(x, y,
z) = po(x, 2) 8(y). This implies that there are no
sources situated outside the detection plane. It is
unlikely to occur in biomedical imaging applications
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Fig. 1. Geometry for 2D image reconstruction.

as, owing to strong optical scattering in tissues, a 3D
source distribution is generally produced.

2. Two-dimensional source directivity: py(x, v,
z) = po(x, z). This implies that the source distribu-
tion is constant in the y direction and can therefore be
regarded as being highly directional in the y—z plane.
Signals emitted by sources outside the detection
plane will therefore not contribute to the detected
signal. For example, a line source orientated per-
pendicularly to the detection plane emitting cylindri-
cal waves would fulfill this condition. Although
conceivable in certain circumstances (e.g., an appro-
priately orientated blood vessel), it is, in general, an
unrealistic situation.

3. Two-dimensional detector directivity: The de-
tector geometry is chosen to provide an omnidirec-
tional response in the detection plane but a highly
directional response in the plane perpendicular to it.
Signals from out-of-plane sources will therefore be
rejected. This represents the most practically rele-
vant approach.

Irrespective of their practical relevance, all three
assumptions imply that no signals from out-of-plane
sources are detected, and any of them could, in prin-
ciple, be used in the formulation of a 2D image-
reconstruction algorithm. For example, as shown
later, it is mathematically expedient to employ as-
sumption 2 when deriving the 2D Fourier-transform-
based reconstruction algorithm even if it is
assumption 3 that is invoked in practice. However,
although assumptions 1 and 2 imply that no signals
arrive at the detection line, they are not exactly
equivalent. This highlights a specific ambiguity in
2D photoacoustic imaging. With assumption 1,
Polx, ¥, 2) = po(x, 2)8(y), the attenuation a(r) of an
acoustic signal originating from a point in the source
distribution in the detection plane will, owing to the
geometrical spreading of the emitted wave front, fol-
low a 1/r dependence. With assumption 2, p,(x,y, z)
= polx, 2), a(r) is proportional to 1/4/r. In practice,
the source geometry in the y direction is unknown.
a(r) could therefore be of a form that lies anywhere
between these two extremes (i.e., a 1/r" dependence,
where % < n < 1); indeed, this uncertainty is implicit
in assumption 3, which imposes no constraints on the
source geometry. Because a(r) is incorporated im-
plicitly or explicitly in the image-reconstruction pro-



cess, uncertainty in its form may compromise the
fidelity of the reconstructed image in two ways.
First, the source—detector distance is different for
each point on the detected wave front, resulting in an
a(r)-dependent distribution of amplitude along the
wave front. This is equivalent to imposing an a(r)-
dependent apodization function along the detection
line, thus effectively modifying the aperture over
which the wave front is sampled, with a consequent
influence on the geometrical parameters (e.g., spatial
resolution) of the reconstructed image. In practice,
the directional sensitivity of the detectors often dom-
inates this notional apodization function, and so the
effect is of limited significance. The second conse-
quence is that the relative amplitudes of sources at
different distances from the detection line may be
incorrectly assigned in the reconstructed image if a(r)
is unknown. The image will remain structurally
correct, and so this effect will be of most consequence
for applications that require a quantitatively accu-
rate reconstruction.

With these limitations in mind, we can now pro-
ceed to consider the task of image reconstruction.
First, consider the photoacoustic wave p(r, ¢) gener-
ated by the absorption of a laser pulse. We assume
that the laser energy is deposited instantaneously
within the target volume, producing an impulsive
initial pressure source distribution—an important
practical requirement for efficient photoacoustic gen-
eration. In practice, approximating to this condition
requires that the laser pulse be sufficiently short
(typically, of the order of nanoseconds) such that heat
loss (due to thermal conduction) and dissipation of
stress (due to acoustic propagation) from the irradi-
ated target volume are insignificant over the laser-
pulse duration. Assuming an acoustically linear
and lossless propagation medium, the propagation of
the photoacoustic wave p(r, ¢) can then be described
by the 3D linear inhomogeneous acoustic wave equa-
tion with the time derivative of the initial impulsive
pressure source distribution p,(r)3(¢) as the source
term [Eq. 1(a)].?® Thus

Ip(r, t)

pon (1a)

¢t Viple, ) = pulr)a(t),

Po(r) = TP (r)p,(r), (1b)

where the initial spatial distribution of pressure p(r)
is given by the product of the light fluence distribu-
tion W(r), the absorption coefficient of the tissue
e (r), and the dimensionless thermomechanical con-
version factor I', the Griineisen coefficient,® a mea-
sure of the efficiency of the conversion of heat energy
to stress.
Equation (1) can be solved to yield!!

1 9 po(r — Ar)
)= — — ———ds. 2
p(r, 1) 41re ot cht ct s @

Equation (2) states that the time-integrated acoustic
pressure, or velocity potential, at a position r and

time ¢, is the sum of all points in the initial pressure
distribution that lie on a spherical surface s centered
on r and of radius Ar equal to the product of the speed
of sound ¢ and ¢. This solution lends itself to the
simplest approach to image reconstruction, whereby
the time-dependent photoacoustic waveforms de-
tected over the tissue surface are spatially resolved
by use of the speed of sound and backprojected over
hemispherical surfaces to obtain a 3D image of the
initial pressure distribution.37 Reducing this to two
dimensions by use of any of the previous assumptions
is straightforward, amounting to discarding the y
spatial dependence, selecting an appropriate function
to represent a(r), and backprojecting over semicircles
in the image plane. The disadvantages are long re-
construction times and the inevitable circular back-
projection artifacts that arise from the indiscriminate
nature of distributing the signal amplitude uniformly
over an arc in the image plane.

An alternative approach is a reconstruction algo-
rithm that uses a Fourier-transform method that has
been developed for 3D photoacoustic imaging. The
full details of the algorithm are described in Ref. 12,
and its use for reconstructing 3D images from exper-
imental data is described in Ref. 13. Briefly, it in-
volves expressing the solution to Eq. (1), p(r, t), in
terms of its spatial- and temporal-frequency compo-
nents k and o, respectively,

p(r, t) = f P(Kk)cos(w - t)exp(i - k - r)d’E,

1

(2m)?
(3a)

with

w=clk|=c\k>+Ek>+Ek> (3b)

For ¢ = 0, the left-hand side of Eq. (3a) becomes equal
to the initial pressure source distribution py(r), P(k)
is therefore the 3D spatial Fourier transform of p,(r).
By use of the dispersion relation of Eq. (3b) and an
algebraic transform described in Ref. 12, P(k) can be
expressed in terms of the Fourier transform of the
time-varying photoacoustic signals detected over the
x—y plane and then inverse Fourier transformed to
yield the desired initial pressure distribution p(r).
This method yields an exact 3D reconstruction, pro-
vided that the velocity c is constant and the measure-
ments extend continuously over an infinite detection
area and all times ¢ > 0. Although in practice the
measurements are spatially and temporally dis-
cretized over a finite detection area, the method can
still be expected to provide an image with fewer ar-
tifacts than the simple backprojection approach,
which never yields an exact reconstruction. An ad-
ditional advantage is computational efficiency,
largely through the use of the fast-Fourier-transform
algorithm, providing a reduction in reconstruction
times of at least 2 orders of magnitude compared with
the backprojection method.

Reducing the Fourier-transform reconstruction
method to two dimensions can be achieved most con-
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veniently with assumption 2, py(x, y, 2) = po(x, 2).
In the spatial-frequency domain we can then write

P(k) = P(k,, k.)3(k,), (4a)

w=ckl=c\/k’+k’. (4b)

We can now proceed to derive the 2D algorithm in
a manner directly analogous to the 3D algorithm?2 to
obtain P(k) in terms of the Fourier transform A(%,, o)
of the detected photoacoustic signals:

2¢ o’ — c’k,”
Vlwfe) ) = = 2
(O]

P[kx’ kZ A(kxa (‘0)7

(5a)

Ak, o) j ’ r p(x, t)exp(—ik,x)cos(wt)dxd.

0

(5b)

By analogy with the 3D algorithm, this yields an
exact reconstruction, providing that the source as-
sumption, py(x, ¥, 2) = po(x, z), in addition to the
requirements of continuous detection over an infinite
line and all ¢ > 0, is fulfilled.

From Eqs. (5a) and (5b), implementation of the
algorithm therefore requires the following steps: (1)
2D Fourier transform the detected pressure signals
to obtain A(%,, w), (2) scale each component of A(%,,, »)
by the expression in front of A(%,, w) in Eq. (5a). (3)
transform w into %, by use of the dispersion relation
of Eq. (4b) to obtain P(k,, k,), and (4) inverse 2D
Fourier transform P(k,, k.) to recover the desired
Do(T).

B. Directional Response of a Rectangular Detector

To reject out-of-plane signals as described in assump-
tion 3, it is necessary to employ a rectangular detec-
tor geometry, ideally of length L and width w such
that L > N\ and w << \, where \ is the acoustic
wavelength. This provides a highly directional re-
sponse in the planes containing the length dimension
of the detector but an omnidirectional response in the
planes containing the width dimension. A line ar-
ray of such detectors as depicted in Fig. 2 will there-
fore define a detection slice with only signals
emanating from sources within this slice being de-
tected. Although the slice is of finite thickness, we
will continue to refer to sources within the slice as
being in plane and those outside as being out of plane.

The detection slice thickness depends on the dis-
tance from the detector. In the nondivergent near-
field receive zone close to the detector, it is
approximately equal to L. Thereafter it increases
linearly in accordance with the far-field directional
response F(0) of the detector. For L > w and angle
0, this is given by?

sin[wL sin(®/\)]
F(®) « wL sin[®/\] ©
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“in-plane” source

line array of rectangular
detector elements

Fig. 2. Geometry of the detection slice defined by a line array of
rectangular detector elements of length L and width w. The point
sources that intersect the detection slice are termed in-plane
sources, and the remaining sources are denoted out-of-plane
sources.

Because expression Eq. (6) requires knowledge of the
frequency content of the signal and pulsed photo-
acoustic signals are broadband, it is more convenient
to model the directivity in the time domain. The
source was numerically modeled by use of Eq. (2).
To simulate the detector response F' to an acoustic
wave p(r, t) as a function of its geometry, we inte-
grated Eq. (2) over the sensitive volume of the detec-
tor:

F(t) = f p(r, )dr = .[ p(r, ) D(r)d’r,
detector volume —%©

1 r € detector area

D(r) = {0 else D

This means the pressure signal is calculated for each
elemental volume dr® within the detector and
summed. To minimize computational expense, we
can insert Eq. (2) into Eq. (7) and rearrange the in-
tegrals, leading to a convolution of the detector ge-
ometry and the pressure source, in essence, a
statement of the principle of acoustic reciprocity:

1 J' D # py(Ar)
——ds,
|Ar|=ct

ct

where
D = po(Ar) = J.oc D(r)py(Ar — r)d’r. (8)

The algorithm based on Eq. (8) is now one in which
the pressure source is convoluted or smeared with the
geometry of the detector and the signal is calculated
as if the detector was a point detector. This is sub-
stantially faster than an algorithm based on Eq. (7).

The model was used to examine the directional
sensitivity of a rectangular detector element by mod-
eling its output in response to acoustic waves emitted
by a disk-shaped source of diameter 0.2 mm and
thickness 20 pm situated at various positions within
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Fig. 3. Simulation of directional response of a single rectangular
detector element that is due to a disk-shaped source of diameter
200 pm and thickness 20 pm aligned parallel to the x—y plane.
The length dimension (L = 800 pm) of the detector is aligned
parallel to the y axis, and the width dimension (w = 100 pm) is
aligned parallel to the x axis. The thickness of the detector was 75
pm. The source is initially located directly above the detector at
x =y =0,z =35 mm. (a) Detected signals as the source is
translated in the y direction from this initial position. (b) De-
tected signals for the corresponding translations in the x direction.

the x—y plane. The disk is assumed to lie parallel to
the x—y plane. The geometry of Fig. (2) is assumed
with the length dimension L of the detector aligned
parallel to the y axis and the width dimension w
parallel to the x axis. The dimensions of the detector
were L = 800 pm, w = 100 pm, and the thickness =
75 pm, those of FP polymer-film detector used in the
experiments described in Section 3 below. To take
into account the sound velocity in the detector of 2200
m/s, compared with water ¢ = 1500 m/s, we reduced
the thickness in the model to 75 pm X 1.5/2.2 = 50
pm (termed the acoustic thickness). To avoid noise
in the simulation due to the discretization imposed by
the grid required that the grid element size be less
than the minimum acoustic wavelength generated.
This is defined by the dimensions of the convoluted
source and, ultimately, the laser-pulse duration.
The upper limit was given by the laser-pulse time T =
10 ns, requiring a grid element size smaller than ¢t =
15 pm. A grid element size of 10 pm was therefore
used.

The source was initially located at a distance of z =
3.5 mm directly above the detector. Figure 3(a)

excitation laser pulses

I Intralipid solution
—
absorbing target

FP sensing head

cw-laser beam
diameter = 12 mm

=

< Ve aperture
zZ
/ — photodiode
—
X ™~ scanning stage

Fig. 4. Experimental imaging setup based on a line-scanned FP
polymer-film sensing interferometer.

shows the effect of translating the source from this
initial position by an amount Ay in the y direction.
With increasing Ay, the signal shifts to the right ow-
ing to the increased source—detector distance, and its
amplitude drops rapidly, falling by almost an order of
magnitude for Ay = 1.5 mm. Figure 3(b) shows the
effect of moving the source from the same initial po-
sition along the x direction. The corresponding de-
crease in signal amplitude for Ax = 1.5 mm is much
smaller at a factor of 2. This indicates that the
anisotropic response of a detector of these dimen-
sions, and for this source geometry, will define a de-
tection slice of approximately 2-mm thickness at z =
3.5 mm. To check that the directional characteris-
tics of the source (owing to its finite size) were not
influencing the simulated directivity in the length
dimension of the detector, we repeated the simulation
in Fig. 3(a) using a source diameter of 50 pm. All
other parameters remained the same. The decrease
in the signal amplitude with Ay was almost identical
to that shown in Fig. 3(a), indicating that, for these
detector dimensions, the upper limit of the detection
slice thickness is defined largely by the detector ge-
ometry.

3. Experimental

In this section the reconstruction methods described
in Subsection 2.A and the use of a rectangular detec-
tor geometry are evaluated experimentally. In all
the images shown, no filtering of the measured sig-
nals or image enhancement was employed. A linear
gray scale was used for all images.

A. Experimental Setup

Figure 4 shows a schematic of the experimental setup
used. The excitation light source was a @-switched
Nd:YAG laser (A = 1064 nm, pulse energy = 26 md,
pulse duration = 6 ns, and repetition rate = 20 Hz).
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The output of the laser was expanded to a diameter of
6 mm by use of a negative lens and used to irradiate
the surface of a 10% aqueous solution of Intralipid-
10% with a peak fluence of 0.2 J/cm?. The approx-
imate values of the optical coefficients of the solution
were w, = 0.14 cm ' and p,’ = 10 ecm™ . These
values were chosen to simulate the strong optical
scattering of soft tissues. Absorbing targets, fabri-
cated by laser printing of dots or lines onto acetate
sheets, were immersed in the Intralipid. The pho-
toacoustic signals generated by the irradiated absorb-
ing regions were detected at the bottom of the
Intralipid bath in the so-called forward or transmis-
sion mode. The ultrasound detector was a 75-pm-
thick polyethylene terepthalate FP polymer-film
sensing interferometer bonded to a 4-mm-thick
impedance-matched polymethylmethacrylate back-
ing stub.* The interferometer was illuminated by a
collimated 60-mW, 850-nm diode-laser beam with a
12-mm 1/e? diameter, and the reflected output beam
was detected by use of a 25-MHz photodiode of diam-
eter 0.8 mm mounted on a personal computer—
controlled scanning stage.’> An angle-tuned phase
bias control system (not shown in Fig. 4) was used to
set the working point of the interferometer to obtain
the optimum sensitivity as described in Ref. 3. Pho-
toacoustic signals arriving at the sensing film modu-
late its optical thickness and hence its reflectivity.
By scanning the photodiode along a line across the
reflected output beam and acquiring the detected
waveform at each step of the scan, one can simulate
a linear array of ultrasound detectors with this sys-
tem. Signal averaging over less than 100 laser shots
was used to obtain the experimental data described in
Subsection 3.B. The signal-acquisition time was ap-
proximately 10 s/scan step.

The detectivity of the sensor was ~5 kPa (over a
25-MHz measurement bandwidth without signal av-
eraging) and the frequency response was 15 MHz—a
performance comparable with piezoelectric polyvi-
nylidene fluoride transducers.’® A key advantage
over piezoelectric transducers is that the geometry of
the detector element is defined by the area of the
polymer sensing film that is optically addressed.
Arbitrary acoustic detection geometries can therefore
be achieved by placement of an appropriately shaped
aperture in front of the photodiode. Thus a rectan-
gular slit aperture was used to obtain the anisotropic
response characteristics discussed in Subsection 2.B.

B. Evaluation of Two-Dimensional Reconstruction
Algorithms

In the first instance, the objective was to evaluate the
image-reconstruction process without introducing
possible artifacts that are due to imperfect rejection
of out-of-plane signals by a rectangular detector ge-
ometry. We therefore used a circular detector geom-
etry that approximated to an isotropic detector and
limited the source geometry to two dimensions by
designing it to be constant in the y direction, py(x, y,
z) = po(x, z)—assumption 2 in Subsection 2.A. The
practical implementation of this was achieved by la-
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Fig. 5. Line-source target used to evaluate image-reconstruction
algorithms. The detector diameter was 0.2 mm.

ser printing a series of strongly absorbing parallel
lines of 180-pm width and 400-pm separation onto a
transparent acetate sheet as shown in Fig. 5. This
was immersed in the Intralipid solution and placed
parallel to, and 3 mm above, the detection plane (x—
y). When irradiated with pulsed laser light, the tar-
get approximates to a series of parallel line sources,
each emitting cylindrical waves. When the detector
(of 0.2-mm diameter) is scanned perpendicularly to
the lines, only the photoacoustic signals emitted by
that part of each line source that intersects the de-
tection plane (the x—z plane containing the scan line)
arrive at the detector.

Figure 6(a) shows the photoacoustic waveforms
p(x, t) detected at 100-pm steps over a 10-mm line
scan. The image clearly shows the cylindrical na-
ture of the waves emitted from each line source with
the envelope of the initial wave fronts at approxi-
mately 2 ws, corresponding to the 3-mm source-
detector distance. Figure 6(b) shows the image
reconstructed from the detected photoacoustic sig-
nals by use of the Fourier-transform algorithm de-
scribed in Subsection 2.A. For comparative
purposes, a reconstruction that uses the radial back-
projection method described in Subsection 2.A is
shown in Fig. 6(c). The same number of image pix-
els (208 X 482) were used in both cases.

The images reconstructed by both methods accu-
rately show the general features of the target, for
example, the correct height and separation of the
sources. However, because the backprojection re-
construction in Fig. 6(c) involves distributing the sig-
nal amplitude over an arc, and therefore into regions
of the image that should be of zero intensity, there are
inevitably artifacts: Circular arcs can be clearly
seen around each of the reconstructed line absorbers.
In contrast, fewer artifacts are seen in the Fourier-
transform reconstructed image because it approxi-
mates (subject to the limited dimensions of the line
scan and spatial and temporal discretizations in the
detection process, etc.) an exact solution. A further
important advantage is that the Fourier-based algo-
rithm is computationally much more efficient: It
takes 11 ws/reconstructed image pixel, whereas the
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Fig. 6. Evaluation of image-reconstruction algorithms by use of
the source—detector geometry depicted in Fig. 5. (a) Photoacous-
tic signals p(x, t) detected at each point of the line scan by use of
a circular detector of diameter 0.2 mm, (b) the image reconstructed
from p(x, t) by use of the Fourier-transform algorithm, and (c) the
image reconstructed by use of the radial backprojection method.

backprojection algorithm takes approximately 3 ms/
pixel by use of a MATLAB code on a 1-GHz personal
computer. The total reconstruction time for the im-
ages in Figs. 6(b) and 6(c) (both of which contain
208 X 482 pixels) was approximately 1 s and approx-
imately 5 min, respectively.

The expanded view of Fig. 6(b) in Fig. 7 shows two
of the reconstructed absorbing lines. The width of
these is approximately 200 wm and is in good agree-
ment with the known width of 180 pm. The lateral
resolution is, by analysis of the edges of the recon-
structed features, conservatively estimated at 200
pm. The thickness of the ink deposited onto the
acetate sheet is not known accurately but is likely to
be significantly less than 10 wm, thus approximating
a spatial impulse function in the vertical direction.
Thus, by measuring the thickness of one of the recon-
structed features in Fig. 7, we can estimate the ver-

5.8 6 62 64 66 68
X (mm)

Fig. 7. Expanded view of Fig. 6(b) [Fourier reconstructed image
Po(x, 2)].

tical spatial resolution at 60 pm, limited by the
75-pm thickness of the detector.

To assess the effect of possible uncertainty in the
source distribution in the y direction, as discussed in
Subsection 2.B, we repeated the radial backprojection
reconstruction using cylindrical (1/+/r) and spherical
spreading attenuation functions (1/r). Apart from a
near uniform scaling factor, there was no discernable
difference between these images and Fig. 6(c).

C. Two-Dimensional Imaging That Uses a Rectangular
Detector Element Geometry

In Subsection 3.C.1 the basic principle of rejecting
out-of-plane signals by use of a rectangular detector
is demonstrated, and in Subsection 3.C.2 the geomet-
rical parameters of the reconstructed image slice are
determined.

1. Comparison of Circular and Rectangular
Detector Geometries

To evaluate the use of a rectangular detector for 2D
imaging, we used a well-defined geometrical arrange-
ment of near-omnidirectional sources distributed in-
side and outside the detection slice (Fig. 2 shows a 3D
representation of the geometry). This consisted of a
horizontal line of absorbing dots of diameter 200 pm
and separated by 800 pm printed onto an acetate
sheet (Fig. 8) and submerged in the scattering solu-
tion. The target was situated at a distance z = 3.2
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Fig. 8. Point-source target used to assess degree of out-of-plane
signal rejection by use of a rectangular (800 pm X 200 pm) detec-
tor. o = 30°.
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Fig. 9. Influence of detector geometry.
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(a) Photoacoustic signals p(x, t) detected at each point of a line scan of the point-source target

(Fig. 8) by use of a circular detector of diameter 0.2 mm, (b) the image reconstructed from these signals, and (c) the profile along the curve

of x symbols superposed on (b).

The corresponding detected photoacoustic signals, reconstructed image, and profile for a rectangular

detector of dimensions 800 pm X 200 pm are shown in (d), (e), and (f), respectively.

mm above the detection line. The detector was
scanned along a 10-mm line in 50-pm steps at an
angle of « = 30 deg to the line of absorbing dots.
Only those dots that lie in the geometrical line of
sight vertically above the detector are in-plane sourc-
es; the remaining dots are out of plane. This ar-
rangement provides a convenient means of assessing
the degree of rejection of the out-of-plane signals and,
ultimately therefore, the thickness of the recon-
structed image slice.

Two line scans of the target shown in Fig. 8 were
carried out. In the first scan, a 200-pm circular ap-
erture was placed in front of the photodiode to create
a detector that approximates to one with an isotropic
response. The purpose of this scan was to check that
the absorbing dots emit acoustic energy into a suffi-
ciently large solid angle such that signals from the
out-of-plane sources actually arrive at the detector
line scan. In the second scan, a rectangular slit ap-
erture of dimensions 800 pm X 200 um was placed in
front of the photodiode. The photoacoustic signals
detected over both line scans, and the corresponding
reconstructed images are shown for both detector ge-
ometries in Fig. 9.

Figure 9(a) shows the signals detected by use of the
circular aperture, and Fig. 9(d) shows those detected
by use of the rectangular aperture. The most notice-
able difference between the two is the nature of the
envelope of the initial wave fronts. With the 200-pm
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circular aperture, it is curved because the detector
approximates an isotropic receiver of low directional
sensitivity and therefore detects signals from each of
the absorbing dots. The signals from the dots at the
beginning and end of the scan arrive at later times
while the signals from the dots at the center of the
scan, where the detector passes directly beneath
them, arrive at earlier times. In contrast, the enve-
lope of the initial wave fronts obtained with the rect-
angular detector in Fig. 9(d) is flat—its lateral extent
is also less than in Fig. 9(a). The dots, which pro-
duce the signals that lie on this envelope, must there-
fore all be situated the same distance from the
detector, and, because the temporal position of the
envelope (~2.1 ws) is the same as the minimum of the
curved wave-front envelope in Fig. 9(a), these dots
must lie vertically above the detector. This shows
that only the signals from the in-plane sources (see
Fig. 2) at the center of the scan are detected; the
remaining out-of-plane signals are not registered.

These observations are confirmed by the recon-
structed images in Figs. 9(b) and 9(e). In the image
in Fig. 9(b), obtained by use of the 200-pm circular
aperture, the reconstructed dots are distributed at
different heights z’ along a curve because of the vary-
ing source—detector distance along the scan line.
The equation of this curve is given by

22 =2+ Ay?,
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Fig. 10.
(reconstructed image):

Image slice thickness as a function of z.

Reconstructed images of point-source target (Fig. 8) situated at three depths
(a) z = 3.7 mm, (c) z = 5.84, and (e) z = 9.66 mm.

(b), (d), and (f) show the horizontal profiles through the

reconstructed dots for each image, illustrating the increasing image slice thickness with z of 9.66, 5.84, and 3.7, respectively.

where
Ay = Ax tan a, 9

and Ay is the distance in the y direction from a par-
ticular dot to the scan line (Fig. 8). Ax is the dis-
tance in the x direction from the dot to the point at
which the scan line intersects with the line of dots.
z' therefore is the distance from the line of dots to the
detection line as a function of x and manifests itself as
the x-dependent vertical height z’ of the sources in
the reconstructed images. A curve of small x sym-
bols according to Eq. (9) is superposed on the image in
Fig. 9(b) and is in good agreement with the position of
the reconstructed sources. The amplitude profile
along this curve is shown in Fig. 9(c). Note that if
both source output and detector sensitivity were truly
omnidirectional all the reconstructed dots would [as-
suming the influence of a(r) is negligible] be of near-
equal intensity. As neither of these conditions are
wholly fulfilled, the intensity of the dots significantly
diminish the farther they are from the scan line.

In Fig. 9(e), which was obtained by use of the rect-
angular detector, the reconstructed dots lie along a
straight horizontal line as only the signals emitted by
sources lying in the detection slice are detected, and

all these sources are the same distance from the de-
tector. As a consequence, Eq. (9) does not fit, and
therefore fewer dots appear in the profile in Fig. 9(f).
These results demonstrate the basic principle of de-
fining an image slice by use of a rectangular detector
element geometry. In Subsection 3.C.2 the thick-
ness of the image slice and the typical spatial reso-
lution are determined.

2. z-Dependent Image Slice Thickness

To measure the thickness AY of the reconstructed
slice as a function of z, we placed the target shown in
Fig. 8 at three different vertical distances above the
detection plane (z = 3.7 mm, z = 5.84 mm, z = 9.66
mm) and scanned the target with the rectangular
detector as described in Subsection 3.C.1. The re-
constructed images and corresponding horizontal
straight-line profiles are shown in Fig. 10. With in-
creasing z, more of the dots are located within the
divergent far-field zone of the detector. The recon-
structed image slice thickness AY therefore increases
as evidenced by the images in Figs. 10(a), 10(c), and
10(e), which show more reconstructed dots as z is
increased. One can obtain AY by estimating the
number n of visible dots in the images, multiplying by
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the known dot separation of s = 800 wm, and pro-
jecting onto the y axis. Thus

AY = (n — 1)s sin «. (10)

For z = 3.7 mm, Fig. 10(e) indicates that n ~ 3.
AY is therefore approximately 0.8 mm. In that this
is the length dimension of the detector, this depth
corresponds to the near-field receive zone. For
greater source—detector distances, the receive zone
begins to diverge as evidenced by the increasing num-
ber of visible dots in Fig. 10 with increasing z. By
use of Eq. (10) for n = 4 at z = 5.84 mm in Fig. 10(c),
AY = 1.2 mm, and, for n = 6 at z = 9.7 mm in Fig.
10(a), AY = 2 mm. The lateral resolution, which
also increases with z, is estimated to be in the range
200250 pm for the images in Fig. 10. The vertical
resolution (as in Subsection 3.B) is estimated at 60
pm for all three images in Fig. 10. It is limited by
the detector thickness and largely independent of z.

4. Conclusion

Aspects of 2D biomedical photoacoustic imaging have
been explored. The Fourier-transform-based recon-
struction algorithm has been demonstrated to pro-
vide a more accurate and faster reconstruction than
simple backprojection methods. With a reconstruc-
tion time of 1 s for a 10° pixel image, it is suitable for
applications in which patient movement or the need
to monitor dynamic physiological events demands
near-real-time image reconstruction.

The use of a rectangular detector geometry to reject
out-of-plane signals for the practical implementation
of 2D imaging has been demonstrated by use of a
line-scanned FP ultrasound sensor. A key parame-
ter is the reconstructed image slice thickness. For
structures of the order of several hundred microme-
ters located as far as 1 cm from the detector, an image
slice thickness varying from 0.8 mm atz = 0 to 2 mm
at z = 10 mm was obtained by use of a rectangular
detector of length dimension L = 800 pm. This
would be suitable for short-range applications such
as imaging superficial blood vessels. For longer-
range applications such as imaging breast tumors to
depths of several centimeters, the slice thickness as-
pect ratio would be optimized by making L signifi-
cantly larger (~1 cm) to extend the nondivergent
near-field receive zone.

The FP polymer-film sensing concept has been
shown to be an ideal detection system for evaluating
the concepts explored in this paper. In particular, the
ability to define arbitrary detection geometries is an
important advantage over discrete piezoelectric trans-
ducers. Although strongly absorbing targets that re-
sulted in relatively high-amplitude signals were used
in this investigation, this type of sensor has previously
been shown to have sufficient sensitivity to detect the
weaker photoacoustic signals generated in more real-
istic tissue phantoms. For example, absorbers with
optical properties similar to blood, submerged in In-
tralipid (u, = 0.03 mm ' and p,” = 1 mm ™ *) have been
imaged to a depth of 2 cm with this concept.? To
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advance to practical biomedical imaging, it now re-
mains to configure the sensor head for backward-mode
use and implement a multielement photodiode array
to reduce data-acquisition time.
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