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ABSTRACT

Reconstructing images from measured time domain signals is an essential step in tomography-mode photoa-
coustic imaging. However, in practice, there are many complicating factors that make it difficult to obtain
high-resolution images. These include incomplete or undersampled data, filtering effects, acoustic and opti-
cal attenuation, and uncertainties in the material parameters. Here, the processing and image reconstruction
steps routinely used by the Photoacoustic Imaging Group at University College London are discussed. These
include correction for acoustic and optical attenuation, spatial resampling, material parameter selection, image
reconstruction, and log compression. The effect of each of these steps is demonstrated using a representative
in vivo dataset. All of the algorithms discussed form part of the open-source k-Wave toolbox (available from
http://www.k-wave.org).

1. INTRODUCTION

Forming an image from measured time domain signals is an essential step in photoacoustic tomography (PAT).
Superficially, this would appear to be a solved problem, particularly given the large number of published
photoacoustic images.1 Indeed, commercial photoacoustic scanners are now available that can generate images
in real time,2 and exact reconstruction formulae for canonical geometries have existed in the mathematical
literature for some time.3 However, in the practical case, there are many complicating factors that make it
difficult to obtain high-resolution images with good signal-to-noise. These include the data being incomplete
(e.g., because the detection aperture is limited or spatially undersampled),4 filtering effects (e.g., because the
transducer elements have limited sensitivity and bandwidth, and have a finite size),5, 6 limited penetration
depth (due to optical and acoustic attenuation),1, 7 and uncertainties in the material properties needed for the
reconstruction.8, 9 While advances have been made to address many of these challenges, the rapid growth in
the development and application of photoacoustic technology means that there is often a disconnect between
researchers developing new algorithms and those performing in vivo imaging studies. In this paper, the pre-
processing, image reconstruction, and post-processing steps routinely used by the Photoacoustic Imaging Group
at University College London (UCL) to generate high-resolution photoacoustic images are discussed. The
purpose is to provide insight into the impact of applying different techniques on reconstructed photoacoustic
images. All of the algorithms discussed form part of the open-source k-Wave image reconstruction toolbox
developed at UCL (available from http://www.k-wave.org).10 This makes it easy for other researchers to
apply them to their own datasets.

2. DATASET AND ACQUISITION PARAMETERS

The dataset used to demonstrate the different image reconstruction steps is taken from Ref. 11 (see Fig. 3(f)
and front cover). This is an in vivo dataset of the blood vasculature and a xenograft (or tumour) composed of
K562 cells labelled with a tyrosinase-based genetic reporter taken in the flank of a nude mouse. The dataset was
acquired using a photoacoustic scanning system based on a planar Fabry-Perot interferometer.12 This was used
as a 2D detection array with 142 × 141 detection elements (giving a total of 20,022 time domain waveforms), an
element separation of 100 µm (giving a scan area of 14.2 × 14.1 mm), and an optically defined element size of
22 µm.11 The -3 dB bandwidth of the detection system was 0.35−22 MHz, and the three-sigma noise equivalent
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Figure 1. (a) Recorded time series data as a function of x-position and time at a y-position of 9 mm. (b) Summation
of the recorded time series data across all y-positions. (c) Power spectrum of the recorded time domain photoacoustic
signals. The solid line shows the spectrum averaged across all signals, and the dashed line shows the spectrum of the
signal recorded in the centre of the array. (d) Average time frequency distribution of the recorded signals. The yellow
(thin) and white (thick) lines show the filter cutoff frequency before and after spline fitting, respectively.

pressure over a 20 MHz bandwidth was 200 Pa. Time domain signals at each detector position were acquired
sequentially at a sampling frequency of 50 MHz with no averaging, and the entire dataset took 6 minutes and 40
seconds to obtain using a 50 Hz excitation laser. Signal acquisition was triggered using a photodiode, such that
the beginning of each time trace was synchronised with the excitation laser pulse reaching the tissue surface.

One line scan (as a function of x-position and time) from the recorded time series data is shown in Fig.
1(a). Bipolar signals from different optically absorbing tissue structures are clearly visible, which illustrates
the low-noise and wide-bandwidth of the measurement system.12 A summation of the recorded time series data
across the y scanning dimension is shown in Fig. 1(b). The strongest signals appear around 1 µs (∼1.5 mm),
however, features are still visible after at least 3 µs (∼4.5 mm). The power spectrum of the recorded data
is shown in Fig. 1(c). The black line shows the spectrum averaged across all the signals, and the dotted line
shows the spectrum of the signal recorded in the centre of the array. This demonstrates the broadband nature
of the acquired photoacoustic signals, with energy from 350 kHz (the low frequency cutoff of the acquisition
system) up to approximately 20 MHz.
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3. IMAGE RECONSTRUCTION AND PROCESSING STEPS

3.1. Workflow

The pre-processing, reconstruction, and post-processing steps used to reconstruct the dataset shown in Fig. 1
are outlined below. The same procedure is routinely followed for most recent in vivo imaging studies using the
Fabry-Perot scanner published by the Photoacoustic Imaging Group at UCL, e.g., Refs. 13–15.

1. Correct for acoustic attenuation in the time series data

2. Select sound speed that maximises the sharpness of the reconstructed image

3. Spatially upsample the acquired data to improve image resolution

4. Reconstruct the photoacoustic image

5. Correction for optical attenuation in the image data

6. Apply image processing and segmentation techniques as appropriate

7. Display as maximum intensity projection (MIP)

These steps are discussed in the following sections, with further details given in the references. The MATLAB
and k-Wave functions used to perform these steps are also described. Note, to illustrate the effect of the indi-
vidual steps on the final reconstructed image, the images displayed in each section are reconstructed cognisant
of details discussed in other sections. In particular, the optimum sound speed is always used, except where
otherwise noted.

3.2. Acoustic attenuation compensation

It is well known that soft biological tissue is acoustically absorbing, with the experimentally observed attenu-
ation following a frequency power law of the form α = α0f

y. Due to the broadband nature of the ultrasound
waves generated in photoacoustics, this causes a depth-dependent magnitude error and blurring of features
in the reconstructed image. Applying compensation for acoustic attenuation can correct for these errors and
improve the visibility and resolution of deeper vessels.16, 17 Here, attenuation compensation is performed using
time-variant filtering, which applies the correction directly to the time series data before reconstruction.18 This
approach is very flexible, and can be applied regardless of the acquisition system, geometry, or the reconstruc-
tion method used. The algorithm works by applying a non-stationary convolution matrix to each recorded
time series patt, where pcorr(t1)

...
pcorr(tN )

 =

 F (t1, τ1) . . . F (t1, τN )
...

...
F (tN , τ1) . . . F (tN , τN )


 patt(τ1)

...
patt(τN )

 . (1)

The matrix F is constructed to allow attenuation compensation as a function of both frequency and travel
distance (or time).18 In k-Wave, this is applied using the function attenComp

sensor_data = attenComp(sensor_data, dt, c0, a0, y);

where sensor_data is a 2D matrix containing the recorded time series patt in each row, dt is the size of the
time step in units of s, c0 is the sound speed in units of m/s, a0 is the power law absorption prefactor in units
of dB/(MHzy cm), and y is the power law absorption exponent. This function also automatically selects a
cutoff frequency for the attenuation compensation (to stop high frequency noise being amplified) based on the
average time-frequency distribution of the signals.18

To compensate for acoustic attenuation in the dataset shown in Fig. 1, the power law absorption parameters
were set to those of breast tissue, with a0 = 0.75 and y = 1.5.19 As the acoustic absorption parameters in
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Figure 2. Three-dimensional reconstructions of the dataset shown in Fig. 1 with and without attenuation compensation.
The three vertical panels show maximum intensity projections (MIPs) through the depth and lateral directions, and
a one-dimensional profile through the lateral MIP at the location shown with a dashed white line. Magnification of
the depth MIPs within the square dotted boxes is shown in the two right panels. Including attenuation compensation
increases the sharpness of the vasculature and tumour, and improves the visibility and resolution of deeper vessels
(arrows) without increasing the noise floor (circled region).

murine tissue are not well characterised, the average value in breast tissue is an apposite choice for soft-tissue
containing a range of tissue types. The noise threshold and energy threshold used to select the filter cutoff
frequency were set to 5% and 95%, respectively. The average time frequency distribution and the automatically
selected filter cutoff frequency are shown in Fig. 1(d). Reconstructed images with and without acoustic atten-
uation compensation are shown in Fig. 2 for comparison. The tumour can be clearly seen as the sponge like
structure in the centre of the image, along with the surrounding blood vasculature. When attenuation com-
pensation is included, the sharpness of the vasculature and tumour is increased. This is particularly noticeable
in the magnified images, which show an improvement down to the voxel level. The visibility and resolution of
deeper vessels is also improved, as shown in the one-dimensional profiles. For example, the visibility and sharp-
ness of the vessel denoted with the black arrows has significantly increased, without a corresponding increase
in the noise floor (circled region). It is useful to point out that these improvements are not an image processing
trick; they arise directly from rectifying the acoustic losses that physically occur as the photoacoustic waves
propagate through tissue.
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Regarding computational time, acoustic attenuation compensation using time variant filtering is very fast
to apply. Using a desktop PC with an 8-core Intel Xeon E5-1660 v3 @ 3 GHz processor running MATLAB
2015a, the attenComp function took 3.1 s to calculate the average time frequency distribution, 0.45 s to select
the cutoff frequency for the filter, 0.042 s to create the filter, and 0.19 s to apply the correction to all 20,022
time domain waveforms. If the filter cutoff frequency is chosen manually (based on the noise floor in the power
spectrum for example20), there is no need to calculate the time frequency distribution, and the correction is
even faster to apply.

3.3. Sound speed selection

The reconstruction of photoacoustic images requires knowledge of the sound speed within the medium so time-
of-flight measurements can be correctly mapped back to the initial pressure distribution. Most reconstruction
algorithms routinely used assume a constant value of sound speed. However, for in vivo imaging, the true value
of sound speed is usually unknown. It is possible to estimate an appropriate value by systematically modifying
the sound speed until the sharpness of the reconstructed image is maximised.8, 21 This is based on the premise
that features in the imaging volume are inherently sharp, and thus the correct sound speed is the one that
produces the sharpest looking image. In k-Wave, sharpness is evaluated using the function sharpness.21 By
default, this uses a sharpness metric or focus function based on a simple finite difference gradient calculation
known as the Brenner gradient. In 2D this is given by

Fbrenner =
∑
x,y

(fx+2,y − fx,y)
2

+ (fx,y+2 − fx,y)
2
. (2)

The sound speed value that maximises the sharpness metric can then be found by looping through a range of
values as shown below, or using simple optimisation routines (e.g., fminbnd in MATLAB).

% set range of sound speeds to test

c_array = c_min:c_step:c_max;

% loop through sound speeds

for c_index = 1:length(c_array)

% compute reconstruction using current value of sound speed

recon = ...

% take maximum intensity projection along the depth direction

mip = max(recon, [], 3)

% compute sharpness metric

sharpness_metric(c_index) = sharpness(mip);

end

% find the index of the maximum sharpness

[~, max_index] = max(sharpness_metric);

% assign optimum sound speed

c_opt = c_array(max_index);

Figure 3(a) shows depth direction (enface) maximum intensity projections (MIPs) of the reconstructed
tumour image using six different values of sound speed from 1400 m/s to 1600 m/s. As the sound speed
is increased, the image is gradually focused and then defocused again. The corresponding focus function
calculated using Eq. (2) is shown in Fig. 3(b). In this case, the focus function is unimodal, with a peak at
1515 m/s (shown with the dashed line). This is within the range of physiological values between fat (1430
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Figure 3. (a) Depth direction maximum intensity projections of the reconstructed image using different values for
sound speed. A focusing and then defocusing can be noticed as the sound speed is increased. The reconstructed image
using the sound speed that maximises the focus function (sharpness metric) is shown in the bottom right panel. (b)
Variation of the focus function for sound speed values between 1400 and 1600 m/s. The focus function is unimodal, and
the value of sound speed that maximises the focus function is shown with a dashed line. The steps used by fminbnd in
MATLAB to find the maximum are shown with the grey dots.

m/s) and muscle (1580 m/s).19 The reconstructed image using the optimised value for sound speed is shown in
the bottom right panel of Fig. 3(a). The computational cost of computing the MIP and sharpness metric are
negligible, thus the main cost of this approach is the repeated image reconstruction that must be performed.
Using fminbnd in MATLAB, the optimum value for sound speed is found in 6 steps, shown as the grey dots
in Fig. 3(b). Combined with an optimised C++ version of the FFT-based algorithm described in Sec. 3.5, the
complete autofocusing procedure takes less than 5 seconds.

3.4. Upsampling

Due to practical constraints of using the Fabry-Perot scanning system (including animal scanning times and
acquisition memory depth), the temporal sampling used for in vivo imaging studies is typically higher than
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the spatial sampling (the same is true of most photoacoustic and ultrasound scanners). For the sampling
parameters used for the tumour dataset, the maximum supported frequencies due to the temporal and spatial
sampling are

fmax,t =
1

2∆t
= 25 MHz > fmax,x =

c

2∆x
= 7.575 MHz . (3)

As shown in Fig. 1(c), the acquired photoacoustic signals are very broadband, containing energy up to∼20 MHz.
This means the acquisition is spatially undersampled. Thus, if the image is reconstructed onto a grid defined
by the spatial acquisition parameters, higher frequency information contained in the temporal signals will not
be used, reducing resolution. To overcome this, the grid parameters used for the reconstruction can be spatially
upsampled. This is demonstrated in Fig. 4, where the tumour image has been reconstructed using time reversal
with upsampling factors of 1 (no upsampling), 2 and 3. This corresponds to a grid spacing (and maximum
supported frequency) of 100 µm (7.575 MHz), 50 µm (15.15 MHz), and 33 µm (22.725 MHz), respectively. To
allow a fair comparison, all three reconstructed images have been resampled to the same resolution for display
using Fourier interpolation (interpftn in k-Wave). There is a very clear improvement with an upsampling
factor of 2 compared to no upsampling. The small vessels are more visible, and there is much greater detail
in the tumour mass. In comparison, there is little perceptible different between the reconstructed images with
2 and 3 times upsampling, despite the latter allowing almost the full range of frequencies contained in the
temporal signals to be used in the reconstruction.

To examine this in more detail, the tumour dataset was reconstructed with an upsampling factor of 3 after
first low-pass filtering the time signals. The reconstructed images for filter cutoff frequencies between 12 MHz
and 4 MHz are shown in Fig. 5. For filter cutoff frequencies above 12 MHz, there was no discernible change
in the image. At 12 MHz, the magnitude of the reconstructed image starts to decrease, and there is a slight
reduction in high frequency variations at the voxel level. At 10 MHz, the main features are all still discernible,
but begin to become noticeably softer. This trend continues down to 4 MHz, where the tumour and main
vessels are still visible, but significantly blurred. Thus for this dataset, qualitatively it would appear that the
frequency content up to ∼12 MHz has a perceptible impact on the reconstructed image. This explains why
there is no noticeable difference seen between upsampling factors of 2 and 3 shown in Fig. 4.

The computational cost of using upsampling (particularly with time reversal image reconstruction) is that
the image reconstruction must be performed using a larger computational grid. The grid size, compute time,
and memory usage for the three reconstructions shown in Fig. 4 (using the 20,022 recorded time series) are
given in Table 1. The reconstructions were performed using an optimised C++/CUDA version of k-Wave
running on an NVIDIA GeForce GTX TITAN X graphics processing unit (GPU).22 Even at the largest scale,
the reconstruction takes less than 30 seconds and uses less than 4 GB of memory.

Table 1. Summary of grid size and compute time to reconstruct the tumour image using time reversal with different
upsampling factors.

Upsampling Factor Grid Size Compute Time Memory Usage

1 162 × 162 × 96 1.5 s 419 MB
2 324 × 324 × 144 8.1 s 1320 MB
3 450 × 450 × 216 25.3 s 3368 MB

3.5. Reconstruction methods

Two algorithms are routinely used for reconstructing the datasets acquired using the planar Fabry-Perot scan-
ning system. The first is a fast one-step method based on an interpolation between spatial and temporal
frequency performed in the Fourier domain as shown below (kspacePlaneRecon in k-Wave).23, 24

p(x, y, t)
FFT−−−→ P (kx, ky, ω)

ω
c2 =k2

x+k2
y+k2

z−−−−−−−−−−→ H(kx, ky, kz)
IFFT−−−→ h(x, y, z) (4)

The second is time reversal, where the detected signals are propagated back into the domain in time reversed
order using a numerical model of the acoustic forward problem (kspaceFirstOrder3D in k-Wave).17, 25, 26
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Figure 5. Reconstructed images using low-pass filtered data with filter cutoff frequencies from 12 MHz to 4 MHz.
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A comparison of the images produced by these two methods is shown in Fig. 6. Because of the different
assumptions inherent in the two algorithms, they produce visibly different images. First, the time reversal
image has noticeably more detail, particularly in the tumour mass and smaller vasculature (e.g., the vessel
denoted with the dashed arrows). This may be due to the way high-frequency information is mapped into the
image in time reversal, and the inclusion of evanescent waves in the reconstruction.10 Second, the FFT-based
image contains wrapping artefacts due to the assumed spatial periodicity of the data. This is clearly visible
when the reconstruction is repeated after spatially zero-padding the time domain signals (right panels). For
example, the vessel denoted with the solid arrow belongs at the top of the image outside the field of view
(bottom right panel), but is mapped to the bottom of the FFT-based image without zero-padding (bottom left
panel). The main advantage of the FFT-based algorithm is its speed. Consequently, it is used for the sound
speed optimisation step discussed in Sec. 3.3, and real-time display. Time reversal is generally used for all other
purposes.

3.6. Image processing

After reconstruction, very basic image processing is performed. First, a positivity condition is usually applied
where negative acoustic pressures in the reconstructed image are thresholded to zero.27 Next, to improve the
visibility of deeper lying vessels, a simple first-order correction for the variable light fluence in tissue is applied
using a solution to the 1D diffusion equation

Φ(z) = Φ0 exp(−µeffz) . (5)

Here Φ(z) is the light fluence at depth z, and µeff is the effective attenuation coefficient, which can be in the
range 50 − 250 m−1 depending on the type of tissue. Note, this assumes the optical illumination is a planar
collimated beam at the top surface of the tissue, the fluence is diffuse everywhere, and the optical properties are
constant throughout the tissue.7 These assumptions do not hold in general, thus this step does not quantitively
correct for the spatial distribution of the fluence, but rather, qualitatively improves the visibility of deeper
structures which in general will have received less light.

The effect of changing µeff on the lateral MIP of the tumour image is shown in Fig. 7. The right panels
show 1D depth profiles summed across both lateral dimensions of the image, and give the total image intensity
as a function of depth. If the image features were distributed evenly throughout the imaging volume, the peaks
in the 1D profile would have approximately the same amplitude. However, because of optical attenuation, the
image intensity rapidly decays with depth. As µeff is increased, the visibility of deeper structures is improved
and the image intensity becomes more uniform. However, this comes at the expense of increasing the noise
level, particularly at greater depths in the image.

In addition to correction for optical attenuation, the image data is often log compressed to reduce the
dynamic range of the image before display (analogous to the log compression performed in ultrasound imaging).
The log compression is performed according to

h̄compressed =
log10

(
1 + 2l × h̄

)
log10 (1 + 2l)

, (6)

where h̄ is the image data normalised between 0 and 1, and l is the compression level, which is typically
set between 0 (low compression) and 4 (high compression). In k-Wave, this is applied using the function
logCompression. The nonlinear mapping given by Eq. (6) is plotted in Fig. 8(a), and the log compressed
images using l set to 1 and 4 are shown in Fig. 8(b). The compression makes it significantly easier to visualise
the different structures in the image, particularly the small vasculature.

No other image processing (e.g., denoising) is routinely applied to the reconstructed images. In some cases,
a manual segmentation and false colour might be used to highlight different regions of the image as shown in
the left panel of Fig. 8(c). k-Wave also includes a vessel filtering function (vesselFilter), the output of which
is shown in the middle panel of Fig. 8(c).28 However, this is less useful in the case of the tumour image, which
appears almost cartoon like. Finally, in some cases a colour map is used for depth direction (en face) maximum
intensity projections to illustrate the depth at which the maximum value is extracted. An example is shown in
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Figure 6. Comparison of images reconstructed using time reversal (top panels) and the FFT-based method (bottom
panels) with and without zero padding the data. Time reversal gives a more detailed image (dashed arrows), and doesn’t
suffer from the wrapping artefacts present in the FFT-based reconstruction (solid arrows).

the right panel of Fig. 8(c). After processing, the 3D images are typically displayed as 2D maximum intensity
projections. For depth-direction (en face) MIPs in particular, this can help reduce the visual perception of
limited view artefacts.4 Note, if image resampling is needed for high-resolution display, this is performed using
Fourier interpolation (interpftn in k-Wave)
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Figure 7. First order correction for optical attenuation using a solution to the 1D diffusion equation. The left panels
show lateral maximum intensity projections through the reconstructed image using different values for the effective
optical attenuation coefficient µeff. The right panels show 1D depth profiles summed across both lateral dimensions of
the image. As µeff is increased, the visibility of deeper vessels is improved (arrows), at the expense of increasing the
noise level.

4. SUMMARY

The image reconstruction and processing methods used in photoacoustic tomography can have a significant
impact on the quality, resolution, and clinical value of photoacoustic images. Consequently, in addition to
optimising the light delivery and ultrasound detection systems, careful thought should also be given to the
image reconstruction process. Techniques such as automatic sound speed selection and acoustic attenuation
compensation are fast and easy to apply, and noticeably improve the reconstructed images. Using the latest
hardware and software advances, three-dimensional time reversal image reconstruction can also be performed
on relatively large datasets in under 30 seconds. All of the algorithms discussed are available in the open source
k-Wave toolbox, which makes it easy for others to apply them to their own datasets.
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Figure 8. (a) Log compression curves for compression values from 0 to 4 calculated using Eq. (6). (b) Reconstructed
photoacoustic images with no compression (left panel), log compression with l = 1 (middle panel), and log compression
with l = 4 (right panel). (c) Other image processing techniques include false colour (left panel), vessel filtering (middle
panel), and depth colour coded maximum intensity projections (right panel).
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