How the Parser works.

1 Choosing a model

This can be done either by clicking “select” on the main interface or typing make <model_name> on the
command line. This sets various quantities in various files, which act like environment variables so that
when you carry out the steps below, the parser knows which model is being “made”.

2 “Making” the model as a symbolic object

To do this, you either click “make” on the interface or type make on the command line.

Making a model as a symbolic object is independent of running simulations. If you have a model which is
in some formal way defective, then chances are that this defect will be picked out when “make”. The end
product of “make” should in most cases be a well formed model. In brief, this is what the parser does (this
next part will make more sense if you first read “helpfiles/modules.pdf”):

1. Preliminary activities:

e Split the descriptor file
e Create any symbolic links to shared module files if requested in the model descriptor file.

e Locate all variables and processes defined in the models module files (whether needed by the
model or not). Check for repetition and inconsistent definitions

e Create a single module file containing all modules for convenience

e Split this single module file into its different components

2. Generate the model as a symbolic object

e Generate reactions and DEterms from templates

Extract the reactions requested in the descriptor file

Generate DE terms from the reactions

Collect together all DE terms (from reactions, independently defined, etc.)
e Set any variables chosen to be fixed (default is none — use with care)
e Generate all the ODEs needed by the model

e Extract the algrels requested in the model descriptor file
3. Variable and parameter handling (symbolic)

e Recursively extract all temporary variables needed by the ODEs and algrels.

e Extract all the key variables and confirm that a rule for their initialisation has been defined. Look
through for other unrecognised strings and assume that these are the parameters definitely needed
by the model. Confirm that they exist.

e Recursively get all parameters needed by the model, starting with those which have already been
defined



4. Generate code, run simulations, etc.

e Generate the output variables

Generate the parameter setting and variable initialisation functions

Compile the parameter setting and variable initialisation functions
Generate the constraints

Generate the right hand side and mass functions needed by RADAUS5
Compile the right hand side and mass functions needed by RADAU5

Link to produce simulation routine

3 Running simulations

This can be done by clicking “run” on the interface, or by typing ./sim on the command line. If you are
sure that you want to use the default parameter values, input file, and output file for the model, then you
can just type make datl.

“make” is performed if necessary. Then parameters are read in, and variables initialised, an input file is
read, and the simulation is run using the RADAUS5 routine. Output is printed to the file specified.



